向量空间与希尔伯特空间的深入解析
1. 向量空间基础
 在向量空间的研究中,维度是一个重要的概念。对于有限维子空间 (A) 和 (B),有以下重要结论: 
 -  子空间的和的维度  :设 (A = {a_i}) 张成子空间 (A),(B = {b_j}) 张成子空间 (B)。 
 - (A \cup B) 张成 (A + B)。因为 (A + B) 中的任意向量都可以表示为 (A) 中向量的线性组合加上 (B) 中向量的线性组合,即 (A \cup B) 中向量的线性组合。 
 - 若 (A \cap B = {0}),则 (A \cup B) 是 (A + B) 的一组基。假设 (a + b = 0),其中 (a = \sum_{i = 1}^{m} \alpha_i a_i),(b = \sum_{j = 1}^{n} \beta_j b_j),可得 (a = -b \in B),又 (a \in A),所以 (a \in A \cap B = {0}),即 (a = 0),同理 (b = 0),这表明 (A \cup B) 中的 (m + n) 个向量线性无关,结合前面 (A \cup B) 张成 (A + B),可知 (A \cup B) 是 (A + B) 的基。 
 - 若 (A \cap B = {0}),则 (\dim(A + B) = \dim(A) + \dim(B))。因为 (A + B) 的维度等于其基 (A \cup B) 中向量的个数,所以 (\dim(A + B) = m + n = \dim(A) + \dim(B))。 
2. 内积空间
内积空间是向量空间的一种特殊类型,具有重要的性质和
 
                       
                             
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   53
					53
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            