csp模拟题(201604-2,俄罗斯方块模拟下坠)

本文介绍了如何编写一个程序模拟俄罗斯方块的游戏机制,给定初始方格图和新加入的板块,通过C++代码实现板块在方格图中的下落过程,不涉及玩家操作和消行得分计算。
摘要由CSDN通过智能技术生成

题目

问题描述

  俄罗斯方块是俄罗斯人阿列克谢·帕基特诺夫发明的一款休闲游戏。
  游戏在一个15行10列的方格图上进行,方格图上的每一个格子可能已经放置了方块,或者没有放置方块。每一轮,都会有一个新的由4个小方块组成的板块从方格图的上方落下,玩家可以操作板块左右移动放到合适的位置,当板块中某一个方块的下边缘与方格图上的方块上边缘重合或者达到下边界时,板块不再移动,如果此时方格图的某一行全放满了方块,则该行被消除并得分。
  在这个问题中,你需要写一个程序来模拟板块下落,你不需要处理玩家的操作,也不需要处理消行和得分。
  具体的,给定一个初始的方格图,以及一个板块的形状和它下落的初始位置,你要给出最终的方格图。

输入格式

  输入的前15行包含初始的方格图,每行包含10个数字,相邻的数字用空格分隔。如果一个数字是0,表示对应的方格中没有方块,如果数字是1,则表示初始的时候有方块。输入保证前4行中的数字都是0。
  输入的第16至第19行包含新加入的板块的形状,每行包含4个数字,组成了板块图案,同样0表示没方块,1表示有方块。输入保证板块的图案中正好包含4个方块,且4个方块是连在一起的(准确的说,4个方块是四连通的,即给定的板块是俄罗斯方块的标准板块)。
  第20行包含一个1到7之间的整数,表示板块图案最左边开始的时候是在方格图的哪一列中。注意,这里的板块图案指的是16至19行所输入的板块图案,如果板块图案的最左边一列全是0,则它的左边和实际所表示的板块的左边是不一致的(见样例)

输出格式

  输出15行,每行10个数字,相邻的数字之间用一个空格分隔,表示板块下落后的方格图。注意,你不需要处理最终的消行


样例输入

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0
0 1 1 1
0 0 0 1
0 0 0 0
3

样例输出

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0

题意理解

这题的主要点还是在读懂题吧,这是16年csp的第二题,肯定是可以做的,所以心态要好

题目意思是给出一个方格图,给出一个符合俄罗斯方块规则的板块,给出下坠的列坐标,模拟填充该板块进入方格图的最终形态

而题目中那句注意,如果最左侧全为0,则说明这一列不是板块的左边界,这是保证对板块定义更明确(因为常理上一个板块的最左边一定是由最左的方块的位置决定,而不是由这个矩阵 j=0 决定)

其实更简单理解一点,如果从第pix列开始下坠,矩阵中的列坐标换算成方格图的坐标就应该初始为pot[i][1] + pix-1,而行坐标则应该初始为方格图的上界以上(这里可以初始为pot[i][0]-4)

只要保证矩阵中最下面的点一开始也不会出现在方格里就行。

模拟过程:判断当前四个点能否下坠,如果可以则横坐标集体加一,否则直接将当前在方格图里的点改写为1。用一个简单的while循环就可以完成

AC代码

#include<iostream>
using namespace std;
char tmp[15][11]={0};
int main() {
	int pot[4][2]={0},cnt=0,pix=0; // pot只记录四个为1的点的横纵坐标
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
	for(int i = 0;i<15;i++){
		for(int j = 0;j<10;j++){
			cin>>tmp[i][j];
		}
	}
	for(int i = 0;i<4;i++){
		for(int j = 0;j<4;j++){
			int x;cin>>x;
			if(x == 1){
				pot[cnt][0] = i-4;
				pot[cnt][1] = j;
				cnt++;
			}
		}
	}
	cin>>pix;
	for(int i = 0;i<cnt;i++){
		pot[i][1] += pix-1;
	}
	while(1){
		bool fair = true;
		for(int i = 0;i<cnt;i++){
			int x = pot[i][0]+1;
			int y = pot[i][1];
			if( x>=0 && tmp[x][y]=='1')fair = false; //当板块从外界进入方格且触碰到有方块的格子,则整体无法移动
			if( x == 15 )fair = false;//当板块某个点从下方出界,整体无法移动
		}
		if(fair == false){ // 如果无法移动,就将当前位置更新到方格中
			for(int i = 0;i<cnt;i++){
				int x = pot[i][0],y = pot[i][1];
				if(x>=0)tmp[x][y] = '1'; //这里更新只需要保证当前点在方格图中(这里不存在下出界的情况)
			}
			break;
		}else { //否则整体下移
			for(int i = 0;i<cnt;i++){
				pot[i][0]++;
			}
		}
	}
	for(int i = 0;i<15;i++){
		for(int j = 0;j<10;j++){
			cout<<tmp[i][j];
			if(j<9)cout<<" ";
		}
		if(i<14)cout<<"\n";
	}
	return 0;
}

<<引用:题目分析 因为这道题的数据量不大,只是一个15 * 10的二维数组,因此可以直接暴力求解。方格图有15行10列,但是对我们有用的只有4列,假设用变量column存放开始的时候板块图案最左边在方格图的列号,那么对我们有用的列号就是从column到column 3,将其减一就可对应到数组中。题目中说过方格图的前四行一定是0,因此从第五行开始,判断模板图案的最后一行能否放在方格图的第五行,若能,则判断第六行,一直到第十五行或者不能放置为止。要注意一点,模板图案的最后一行不一定是4,如果模板图案的第四行全是0,且第三行不全为0,那么模板图案的最后一行是3,依次类推。>> 对于这个题目,我们可以采用暴力求解的方法。首先,我们知道方格图是一个15行10列的二维数组,我们只需要关注其中的4列即可。假设我们用变量column来表示板块图案最左边在方格图的列号,那么对我们有用的列号就是从column到column+3。要将列号转换为数组中的索引,只需要将其减一即可。 题目中指出方格图的前四行一定是0,所以我们从第五行开始判断。我们判断模板图案的最后一行能否放置在方格图的第五行,若能,则继续判断第六行,一直到第十五行或者不能放置为止。需要注意的是,模板图案的最后一行不一定是4,如果模板图案的第四行全是0,且第三行不全为0,那么模板图案的最后一行是3,以此类推。 现在,让我们来阅读下面的代码,看看如何实现这个思路: <<引用:ac代码 #include<bits/stdc++.h> using namespace std; const int N = 20; int n, m; int g[N][N], s[N][N]; int p; // x,y是4*4的小方块的左上角的坐标 bool draw(int x, int y){ memcpy(s, g, sizeof g); // s是个新的画布,用于最后输出 //将4*4的小方块画到新画布里 for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) if(p[i][j]){ int a = x + i, b = y + j; // a,b的坐标是左上角偏移量 s[a][b] ++; if(s[a][b] == 2) return true; } return false; } int main(){ for(int i = 0; i < 15; i++) for(int j = 0; j < 10; j++) cin >> g[i][j]; // 最下面一行补上一层地板 for(int i = 0; i < 10; i++) g[15][i] = 1; // 读入4*4的小方格 for(int i = 0; i < 4 ; i++) for(int j = 0; j < 4; j++) cin >> p[i][j]; int c; cin >> c; c--; // 读入的时候下标从1开始,变成下标从0开始 for(int i = 0; ; i++){ if(draw(i, c)){ //新来的4*4的左上角的下标:i行,j列 draw(i -1, c); break; } } for(int i = 0; i < 15; i++){ for(int j = 0; j < 10; j++) cout << s[i][j]<<" "; cout << endl; } } >> 以上就是解决这个问题的代码,我们从输入中读取了方格图和板块图案的数据,然后通过遍历的方式判断板块图案是否可以放置在方格图中,并将结果保存在新的画布s上。最后,我们输出s作为答案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值