考研数学——高数:微分方程

一、一阶线性微分方程

两种形式:

非齐次:        y'+p(x)y=Q(x)

齐次:           y'+p(x)y = 0

推导过程

推导公式的过程一般由特殊到一般:所以先求解齐次方程的解

>>>\frac{dy}{dx} = -p(x)y

>>>\frac{dy}{y} = -p(x)dx (然后对等式两边同时积分)

>>> ln|y| = -\int p(x)dx+ c_1

>>> y = \pm e^{c_1}e^{-\int p(x)dx} = ce^{-\int p(x)dx}

再来求非齐次方程的解,由齐次解中的常数c联想非齐次方程中的Q(x)

c如果是关于x的方程,那么由这个解就能推出非齐次方程的形式

那么直接有推断的式子;        y = C(x)e^{-\int p(x)dx}...(1)

>>>y' = C'(x)e^{-\int p(x)dx}-C(x)p(x)e^{-\int p(x)dx}...(2)

由于这个式子同时出现了C(x)与p(x)的乘积,为了能结合原方程式(含有p(x)y 且不含C(x)p(x)),所以将(1)式左右同乘p(x),并与(2)相加

y' + p(x)y = C'(x)e^{-\int p(x)dx} = Q(x) (将e移到右边再同时积分)

C(x) = \int Q(x)e^{\int p(x)dx}dx + c (再将这个C(x)代入解的式子中)

y = e^{-\int p(x)dx}\times[\int Q(x)e^{\int p(x)dx}dx+c](最终解)

例题

  •  p(x) 是谁
  •  Q(x) 是谁
  • 公式用哪个

(1)y'-\frac{2}{x}y = x^2        (2) \frac{dy}{dx} = \frac{1}{x+y} (两边求倒数,可以解出y关于x的解)

二、伯努利方程

y' + p(x)y = Q(x)y^\alpha

  1. 如果α=0,则是一阶非齐次的形式
  2. 如果α=1,则是一阶齐次的形式
  3. 故这里仅考虑α≠0,1的情况

推导过程

y^{-\alpha }y'+p(x)y^{1-\alpha } = Q(x) (将右边y项除到左边)

注意到1-α刚好比-α高一次,如果换元可以大大简化式子(令 z = y^(1-α) )

z' = y^{-\alpha }y',z'+p(x)z = Q(x)

这时候直接看作z与x的一阶线性微分方程求解,最后根据z与y的关系回代即可得到最终解

  1. 将y的次方移项
  2. 换元
  3. 看作新未知数的一阶方程求解
  4. 根据关系回代得到结果

例题

(1) \frac{dy}{dx}+\frac{y}{x} = a(lnx)y^2       

(2) \frac{dy}{dx} = \frac{1}{xy+x^2y^3} (两边求倒数后选择将一个看作未知数,根据满足伯努利公式形式的方程的解)


三、常系数齐次线性微分方程

二阶常系数齐次线性方程

y''+py'+qy =0

解法

  1. 写特征方程(改写为 r^2+pr+q=0
  2. 根据 △ 大于0(小于0、等于0)三种情况,代入三种根的解(r1、r2为特征方程的两个根)
    1. \Delta \geq 0 时 直接根据中学的求根公式得到根
    2. \Delta <0,r_1 = \alpha +\beta i,r_2 = \alpha -\beta i

        (1)\Delta >0,y = c_1e^{r_1x}+c_2e^{r_2x}

        (2)y = (c_1+c_2x)e^{r_1x},(r_1=r_2)

        (3)y = e^{\alpha x}(c_1cos\beta x+c_2sin\beta x)

例题

求微分方程通解        y^{(4)}-2y^{(3)}+5y'' = 0

  1. 写特征方程 r^4 -2r^3+5y^2 = 0
  2. 改写方程形式得到 r^2(r^2-2r+5) = 0
  3. 这时可以看到是有r1=r2=0(二重实根),计算得到r3,r4为单复根
  4. 结果 y = e^{0x}(c_1+c_2x)+e^x(c_3cos2x+c_4sin2x)

暂时没复习到线代部分,我看网课对这里的单复的理解就是,这个解如果有和它相等的,那这个就是复根,有多少个相同的就是多少重复根,这也能讲得通为什么 △>0时表现出来的是两个单实根,而等于0时表现出来的是2重复根

四、常系数非齐次线性微分方程

这部分的教材资料可以参考下面这篇博客http://t.csdnimg.cn/Z9prHicon-default.png?t=N7T8http://t.csdnimg.cn/Z9prH

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值