好吧是我小看了dijkstra的性能,在数据较大的稀疏图中,邻接图还是有比较好的空间花费
题目
问题描述
G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家也建设一个高速铁路系统。
建设高速铁路投入非常大,为了节约建设成本,G国国王决定不新建铁路,而是将已有的铁路改造成高速铁路。现在,请你为G国国王提供一个方案,将现有的一部分铁路改造成高速铁路,使得任何两个城市间都可以通过高速铁路到达,而且从所有城市乘坐高速铁路到首都的最短路程和原来一样长。请你告诉G国国王在这些条件下最少要改造多长的铁路。输入格式
输入的第一行包含两个整数n, m,分别表示G国城市的数量和城市间铁路的数量。所有的城市由1到n编号,首都为1号。
接下来m行,每行三个整数a, b, c,表示城市a和城市b之间有一条长度为c的双向铁路。这条铁路不会经过a和b以外的城市。输出格式
输出一行,表示在满足条件的情况下最少要改造的铁路长度。
样例输入
4 5
1 2 4
1 3 5
2 3 2
2 4 3
3 4 2样例输出
11
评测用例规模与约定
对于20%的评测用例,1 ≤ n ≤ 10,1 ≤ m ≤ 50;
对于50%的评测用例,1 ≤ n ≤ 100,1 ≤ m ≤ 5000;
对于80%的评测用例,1 ≤ n ≤ 1000,1 ≤ m ≤ 50000;
对于100%的评测用例,1 ≤ n ≤ 10000,1 ≤ m ≤ 100000,1 ≤ a, b ≤ n,1 ≤ c ≤ 1000。输入保证每个城市都可以通过铁路达到首都。
题意理解
这题就是借着修高铁的幌子,其实就是说明了哪些路是可连接的,然后选路而已
然后根据dijkstra的性质,可以从一特定点发出,得到距离图上其他任一点的最小距离
这里的特定点也就是一号点,由于dijkstra得到的是到某点整个路径的距离,我们需要的是每一段的花费,根据更新距离时的方法可以得到
(到 k 点新增花费 应该为 从1到某点tmp 的花费 加上 tmp到 k点的花费)
(dist[k] = dist[1][tmp] + dist[tmp][k] )而dist[1][tmp] = dist[tmp]
我们在计算距离的时候单独记录一下dist[1][tmp]为前缀数组pre[k](到k点前的前置距离)
这里可能会有多条路更新到源点的距离相同,这时根据题目的意思要保证新增花费最小,也就是在总距离相同时,保证到当前点的前置距离尽可能大(和为定值,要想一个最小化,另一个就要最大化)
AC code
#include<iostream>
#include<vector>
#include<memory.h>
using namespace std;
vector<vector<pair<int,int> > >gragh(10010);
int vis[10010]={0};
int dist[10010]={0};
int pre[10010]={0};
const int inf=0x3f3f3f3f;//表示无穷大。
int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int n,m,ans = 0;
cin>>n>>m;
memset(dist,inf,sizeof dist);
for(int i = 1;i<=m;i++){
int a,b,w;
cin>>a>>b>>w;
gragh[a].push_back({b,w});
gragh[b].push_back({a,w});
//初始化dist中可到达的点的距离,此时所有点前置距离都为默认的0
if(a == 1)dist[b] = w;
if(b == 1)dist[a] = w;
}
int size;
for(int i = 1;i<=n-1;i++){
int next,m_w = inf;
for(int j = 2;j<=n;j++){
if(vis[j] == 1 || dist[j] == inf)continue;
if(dist[j] < m_w){
next = j;
m_w = dist[j];
}
}
vis[next] = 1;
ans += m_w - pre[next]; // 新增开销为 总距离 - 前置距离
size = gragh[next].size();
for(int j = 0;j<size;j++){
int to = gragh[next][j].first,w = gragh[next][j].second;
if(vis[to] ==0 && dist[to] >= dist[next] + w){ // 有相等的情况也要进入,取最大的前置距离
dist[to] = dist[next] + w;
pre[to] = max(pre[to],dist[next]);
}
}
}
cout<<ans;
return 0;
}