PKCS1_RSA


RSA的RFC文档已经更新了很多次,截至本文(2023.1),最新的文档是 RFC 8017: PKCS #1: RSA Cryptography Specifications Version 2.2。在页面开头搜索关键词Obsolete可以链接到历史文档。应用较广的版本是 RFC 2313: PKCS #1: RSA Encryption Version 1.5

也可以参考NIST.SP.800-56BFIPS 186-4, Digital Signature Standard (DSS) | CSRC (nist.gov)

PKCS, The Public-Key Cryptography Standards,涉及多个标准,其中PKCS #1为RSA的标准,可以在RFC官网搜索PKCS查阅。

简介:

  • 命名取自三位发明者的姓氏字母Ron Rivest、Adi Shamir、Leonard Adleman;
  • 官网:https://rsa.com/
  • 1983年申请专利,现已过期,所以可以商用;
  • 公钥密码基于数学困难问题保证机密性,RSA的基础是,大整数质因数分解十分困难;
  • RSA的实现通常会用到Base64,主要是为了防止产生乱码;
  • RSA的密钥长度、密文和签名长度与模量n一致,比如2048 bits(256 bytes),参考FIPS记为nlen,RSA的安全强度与模量n的位数相关联;
    • 2017年根据ECRYPT报告,建议长度不少于2048 bits;
    • FIPS 186-4签名标准中为1024, 2048 和3072 bits;
  • 签名和解密(基于私钥)比验签和加密(基于公钥)慢;

文章与PKCS一致。

3. Key Types

RSA Public Key:

  • n, the RSA modulus(模量), a positive integer
  • e, the RSA public exponent, a positive integer

RSA Private Key:

  • n, the RSA modulus, a positive integer, the same as in the corresponding RSA public key.
  • d, the RSA private exponent, a positive integer

其中,私钥在RFC 8017中还有第二种表示法,参数很多,感兴趣的可查看原文档。

密钥生成步骤参考FIPS 186-4

  • B.3.1 Criteria for IFC Key Pairs
  • B.3.3 Generation of Random Primes that are Probably Prime

IFC: Integer Factorization Cryptography

术语:

  • LCM, Least Common Multiple, 最小公倍数。
  • GCM, Greatest Common , 最大公约数。

公钥质数E

根据FIPS 186-4 B.3.1 1(b),E使用满足以下条件的默认值即可:

2^16 < e < 2^256
65537 == 2^16 + 1  # default

若E采用随机值,则性能不可控。

生成随机大质数p和q

需要使用伪随机数生成器生成这两个大质数,

  • (p-1)和(q-1)分别与e互素( relatively prime to e)
  • len§ = len(q) = nlen/2
  • 2(nlen-1)/2 <= p <= 2nlen/2 - 1 == 2len§ - 1, q一致
  • p和q差值 > 2nlen/2-100

N = p x q,生成N后丢弃p和q。

生成方法有两种:

  1. Provable primes (see Appendix B.3.2)
  2. Probable primes (see Appendix B.3.3).

判断素数

方法有很多,FIPS 186-4 C.3 PROBABILISTIC PRIMALITY TESTS提供了以下方法:

  • Miller-Rabin Probabilistic Primality Test
  • Enhanced Miller-Rabin Probabilistic Primality Test
  • (General) Lucas Probabilistic Primality Test

其它还有费马素性检测(Fermat Primality Test)等。

参考代码:\Crypto\Math\Primality.py

求最小公倍数L

L = LCM(p-1, q-1)

GCD(E, L) == 1,保证一定存在私钥中的D;

求私钥质数D

2nlen/2 < D < L,若不满足需要重新生成p和q。

E x D mod L == 1,保证可以解密还原明文。

即:D = E-1mod L

等价于:1==(ED) mod L

Miracl库的xgcd可以用来求模逆:

xgcd(x, p, x, x, x,); // x = 1/x mod p (p is prime)

PyCryptodome generate()

\Crypto\PublicKey\RSA.py

def generate(bits, randfunc, e=65537):
    # ...

    d = n = Integer(1)
    e = Integer(e)

    while n.size_in_bits() != bits and d < (1 << (bits // 2)):
        # Generate the prime factors of n: p and q.
        # By construciton, their product is always
        # 2^{bits-1} < p*q < 2^bits.
        size_q = bits // 2
        size_p = bits - size_q

        min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt()
        if size_q != size_p:
            min_p = (Integer(1) << (2 * size_p - 1)).sqrt()

        def filter_p(candidate):
            return candidate > min_p and (candidate - 1).gcd(e) == 1

        p = generate_probable_prime(exact_bits=size_p,
                                    randfunc=randfunc,
                                    prime_filter=filter_p)

        min_distance = Integer(1) << (bits // 2 - 100)

        def filter_q(candidate):
            return (candidate > min_q and
                    (candidate - 1).gcd(e) == 1 and
                    abs(candidate - p) > min_distance)

        q = generate_probable_prime(exact_bits=size_q,
                                    randfunc=randfunc,
                                    prime_filter=filter_q)

        n = p * q
        lcm = (p - 1).lcm(q - 1)
        d = e.inverse(lcm)

4. Data Conversion Primitives

  • I2OSP - Integer-to-Octet-String == long_to_bytes
  • OS2IP - Octet-String-to-Integer == bytes_to_long

5. Cryptographic Primitives

源码参考PyCryptodome

5.1. Encryption and Decryption Primitives

公钥加密,私钥解密。

5.1.1 RSAEP

RSA Encryption Primitive

def RSAEP ((n, e), m):
    #  an integer between 0 and n - 1
    return  c = m**e % n

# pycryptodome \Crypto\PublicKey\RSA.py
def _encrypt(self, plaintext):
    if not 0 <= plaintext < self._n:
        raise ValueError("Plaintext too large")
    return int(pow(Integer(plaintext), self._e, self._n))

5.1.2 RSADP

RSA Decryption Primitive

# def RSADP (K, c):
    # K: one of the 2 forms of private key
def RSADP((n,d), c):
    return  m = c**d % n

def RSADP((p, q, dP, dQ, qInv, r_i, d_i, t_i)
	, c):
    m_1 = c**dP % p 
    m_2 = c**dQ % q
    if u > 2:
         m_i = c**(d_i) % r_i # i = 3, ..., u
	h = (m_1 - m_2) * qInv % p
    m = m_2 + q * h
    if u > 2:
        R = r_1
        for i in range(3, u+1):
            R = R * r_(r-1)
            h = (m_i - m) * t_i % r_i
            m = m + R * h.
	return m

# pycryptodome \Crypto\PublicKey\RSA.py
def _decrypt(self, ciphertext):
    if not 0 <= ciphertext < self._n:
        raise ValueError("Ciphertext too large")
    if not self.has_private():
        raise TypeError("This is not a private key")

    # Blinded RSA decryption (to prevent timing attacks):
    # Step 1: Generate random secret blinding factor r,
    # such that 0 < r < n-1
    r = Integer.random_range(min_inclusive=1, max_exclusive=self._n)
    # Step 2: Compute c' = c * r**e mod n
    cp = Integer(ciphertext) * pow(r, self._e, self._n) % self._n
    # Step 3: Compute m' = c'**d mod n       (normal RSA decryption)
    m1 = pow(cp, self._dp, self._p)
    m2 = pow(cp, self._dq, self._q)
    h = ((m2 - m1) * self._u) % self._q
    mp = h * self._p + m1
    # Step 4: Compute m = m**(r-1) mod n
    result = (r.inverse(self._n) * mp) % self._n
    # Verify no faults occurred
    if ciphertext != pow(result, self._e, self._n):
        raise ValueError("Fault detected in RSA decryption")
    return result

5.2. Signature and Verification Primitives

私钥签名(加密),公钥验证(解密)。

其实和5.1加解密是一样的。

5.2.1. RSASP1

RSA Signature Primitive, version 1

# def RSASP1 (K, m):
    # K one of the 2 forms of private key
    # m message representative, an integer between 0 and n - 1
def RSASP1((n,d), m)
    return s = (m**d) % n

def RSASP1((p, q, dP, dQ, qInv, r_i, d_i, t_i)
	, m):
    s_1 = m**dP % p
    s_2 = m**dQ % q
    if( u > 2):
        s_i = m**(d_i) % r_i # i = 3, ..., u
	h = (s_1 - s_2) * qInv % p
    s = s_2 + q * h
    if ( u > 2 ):
        R = r_1
        for i in range(3, u+1):
            R = R * r_(i-1)
            h = (s_i - s) * t_i mod r_i
            s = s + R * h
    return s

5.2.2. RSAVP1

RSA Verification Primitive, version 1

def RSAVP1 ((n, e), s):
    #  an integer between 0 and n - 1
    return m = s**e % n

6. Overview of Schemes

这一部分仅涉及RSA对数据的处理,实际应用中还要有密钥管理,如密钥获取和验证。

Two types of scheme(方案) :

  • encryption schemes
    • RSAES-OAEP (Section 7.1)
    • RSAES-PKCS1-v1_5 (Section 7.2)
  • signature schemes
    • RSASSA-PSS (Section 8.1)
    • RSASSA-PKCS1-v1_5 (Section 8.2)

一对密钥仅能用于一种应用方案。

加解密示例

# from Crypto.Util.number import inverse
def inverse(u, v):
    """The inverse of :data:`u` *mod* :data:`v`."""

    u3, v3 = u, v
    u1, v1 = 1, 0
    while v3 > 0:
        q = u3 // v3
        u1, v1 = v1, u1 - v1*q
        u3, v3 = v3, u3 - v3*q
    while u1<0:
        u1 = u1 + v
    return u1

def gcd(a:int, b:int):
    if ( b > a):
        a,b = b, a
    while b:
        a,b = b, a % b
    return a;

def lcm(a:int, b:int):
    # 最小公倍数=两数相乘/两数的最大公约数
    a1 = a
    b1 = b
    while b1:
        a1,b1 = b1, a1 % b1		#a1为最大公约数
    return (a * b // a1)

p = 17
q = 19
n = p * q # 323
L = lcm(p-1, q-1) # 144
e = 5   # gcd(e, L) = 1
d = inverse(e,L)    # 29 * 5 mod 323 == 1

# RSAEP Condition: 0 < m < n
m = 123
cipher = (m**e)%n   # 255
decrypt = (cipher**d)%n # 123

OpenSSL接口

接口

OpenSSL 3.0以前:

https://www.openssl.org/docs/man3.0/man3/RSA_new.html
https://www.openssl.org/docs/man3.0/man3/RSA_generate_key.html

OpenSSL 3.0以后:

  • https://www.openssl.org/docs/man3.0/man7/EVP_PKEY-RSA.html
  • https://www.openssl.org/docs/man3.0/man3/EVP_PKEY_generate.html
  • https://www.openssl.org/docs/man3.0/man3/PEM_write_PrivateKey.html

Demo:

  • \demos\pkey\EVP_PKEY_RSA_keygen.c

命令

openssl genrsa --help
openssl rsautl -help
openssl rsa -help
openssl genrsa -out prikey.pem 1024

openssl rsa -in prikey.pem -RSAPublicKey_out -out pubkey.pem
# -----BEGIN RSA PUBLIC KEY-----
openssl rsa -in prikey.pem -pubout -out pubkey.pem
# -----BEGIN PUBLIC KEY-----
# 用-pubout
openssl rsautl -encrypt -in data.txt -inkey pubkey.pem -pubin -out data_enc.txt
openssl rsautl -decrypt -in data_enc.txt -inkey prikey.pem -out data_dec.txt

实现

https://github.com/C0deStarr/CryptoImp/pubkey/rsa

参考资料

RFC 8017: PKCS #1: RSA Cryptography Specifications Version 2.2

NIST.SP.800-56Br2-Recommendation for Pair-Wise Key Establishment Using Integer Factorization Cryptography (nist.gov)

FIPS 186-4, Digital Signature Standard (DSS) | CSRC (nist.gov)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值