pytorch
文章平均质量分 80
gailj
校级十佳研究生标兵
全国大学生智能汽车竞赛国家一等奖
发表SCI论文多篇
展开
-
深度学习中optimization的方法
结合网上的资料与李宏毅老师的课堂教学,总结一下optimization的方法。如果以对训练结果不满意,可以尝试用下述的方法,可以优先考虑方法1-4、方法6方法1:正则化(Regularization)正则化是防止神经网络overfitting的一种方法,由于模型的参数太多,所以就容易过拟合(可以想象一下决策树需要剪枝),其原理是在损失函数中增加一个惩罚项来限制过大的权重。通常有3种方法:L1正则化,L2正则化,dropoutL1正则化,江湖中也人称Lasso,表示各个参数绝对值之和:它之所以可以防止原创 2022-01-14 00:54:39 · 1171 阅读 · 0 评论 -
Python/Pytorch 显示图片
python如何显示图片是一个谜题,今天就让我们来揭秘它!首先,python中一般采用plt.imshow()函数读取,今天我们主讲这个。一、plt.imshow()函数参数:通常直接采用 plt.imshow(img) 即可:img图像数据,支持的数组形状是:(M,N) : 带有标量数据的图像。数据可视化使用色彩图。(M,N,3) :具有RGB值的图像(float或uint8)。(M,N,4) :具有RGBA值的图像(float或uint8),即包括透明度。前两个维度(M,N)定义原创 2022-01-05 21:08:22 · 7225 阅读 · 0 评论 -
以机器学习为背景,什么样的机器学习小技巧、代码风格比较好?
不同人编程时的思路不一样,本人想将学习过程中看到的、个人认为比较好的机器学习小技巧、代码写作风格整理一下,便于以后写程序时去用。机器学习时会需要调整许多hyper-parameters,有些时候可能我们将这些超参数左定义一个,右定义一个,等程序庞大后,就容易忘记有哪些hyper-parameters了,一个有效的办法是将这些超参数统一整理成一个字典。例如:config = { 'n_epochs': 3000, # maximum number of ep原创 2021-12-29 00:36:52 · 764 阅读 · 0 评论 -
学习python/pytorch过程中遇到的知识点
Pytorchtorch.backends.cudnn.deterministic 和 torch.backends.cudnn.benchmark 这两个参数,用于固定算法,使每次运行结果都一样。将deterministic置为True的话,每次返回的卷积算法将是确定的,即默认算法。如果配合上设置 Torch 的随机种子为固定值的话,应该可以保证每次运行网络的时候相同输入的输出是固定的。benchmark作用是优化cudnn的运行,cuda可以加快程序运行速度,自动寻找最适合当前配置的高效算法,来原创 2021-12-26 21:41:25 · 2213 阅读 · 1 评论 -
机器学习/深度学习中常见数据集加载(读取)方法
数据集有不同的类型,例如图像、文本、二进制、文件夹等等格式,用何种方法去加载这些数据,以及加载数据后的数据类型是什么(tensor、array、dataframe等等)?这里总结一下常见种类的数据集读取函数。文本文件:CSV、TSV、Json、TxtCSV文件是逗号分隔值(Comma-Separated Values,CSV),其文件以纯文本形式存储表格数据(数字和文本);TSV 是Tab-separated values的缩写,即制表符分隔值,与...原创 2021-12-25 15:34:12 · 20172 阅读 · 0 评论 -
pytorch 线性回归 笔记
import torchx_data = torch.Tensor([[1.0],[2.0],[3.0]])y_data = torch.Tensor([[2.0],[4.0],[6.0]])class LinearModel(torch.nn.Module): def __init__(self):#构造函数 super(LinearModel,self).__init__() self.linear = torch.nn.Linear(1,1)#构造.原创 2021-06-18 23:06:57 · 162 阅读 · 1 评论