题解 子树问题 dp

题解 子树问题

题目描述

KqjgeK.png

数据范围: n , k ≤ 500 n,k \leq 500 n,k500

具体做法与心路历程

考试时想了一下,只能设出 d p dp dp方程,然后不会转移。

具体做法

f [ s i z e ] [ d e p ] f[size][dep] f[size][dep]表示有 s i z e size size个节点,最大深度不超过 d e p dep dep的合法的树的数目。

考虑怎么转移 f [ s i z e ] [ d e p ] f[size][dep] f[size][dep]:

首先有 2 2 2的父亲一定是 1 1 1,那么我们枚举以 2 2 2为根的大小i,那么除去这 i i i个点其余点构成一颗以 1 1 1为根,点数为 s i z e − i size-i sizei,最大深度为 d e p dep dep的树。选取 2 2 2的子树中的点有 C s i z e − 2 i − 1 C_{size-2}^{i-1} Csize2i1种方案。所以转移为:
f [ s i z e ] [ d e p ] = ∑ i = 1 s i z e − 1 f [ s i z e − i ] [ d e p ] × f [ i ] [ d e p − 1 ] × ( j − 1 i − 2 ) f[size][dep]=\sum_{i=1}^{size-1}{f[size-i][dep]\times f[i][dep-1]\times (^{i-2}_{j-1})} f[size][dep]=i=1size1f[sizei][dep]×f[i][dep1]×(j1i2)
对于题目的限制条件我们把方案看成 0 0 0即可。

C o d e \mathcal{Code} Code

/*******************************
Author:galaxy yr
LANG:C++
Created Time:2019年11月02日 星期六 15时31分15秒
*******************************/
#include<cstdio>
#include<algorithm>

using namespace std;

struct IO{
    template<typename T>
    IO & operator>>(T&res)
    {
        T q=1;char ch;
        while((ch=getchar())<'0' or ch>'9')if(ch=='-')q=-q;
        res=(ch^48);
        while((ch=getchar())>='0' and ch<='9') res=(res<<1)+(res<<3)+(ch^48);
        res*=q;
        return *this;
    }
}cin;

const int mod=998244353;
const int maxn=505;
long long n,k,fac[maxn],ifac[maxn],f[maxn][maxn],l,r;
bool unable[505],vis[maxn][maxn];

void init()
{
    fac[0]=fac[1]=ifac[0]=ifac[1]=1;
    for(int i=2;i<=n;i++)
        fac[i]=1ll*fac[i-1]*i%mod,ifac[i]=1ll*(mod-mod/i)*ifac[mod%i]%mod;
    for(int i=2;i<=n;i++)
        ifac[i]=1ll*ifac[i-1]*ifac[i]%mod;
}

int C(int n,int m)
{
    return 1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}

long long dp(int size,int dep)
{
    if(size<=0 || dep<=0) return 0;
    if(vis[size][dep]) return f[size][dep];
    vis[size][dep]=1;
    if(size==1) return f[size][dep]=1;
    if(!unable[size-1])
        f[size][dep]=dp(size-1,dep-1);//1只有2这个子树
    for(int i=1;i<=size-2;i++)
        if(!unable[i])
        {
            int res=1ll*C(size-2,i-1)*dp(i,dep-1)%mod*dp(size-i,dep)%mod;
            f[size][dep]=(f[size][dep]+res)%mod;
        }
    return f[size][dep];
}

int main()
{
    //freopen("subtree.in","r",stdin);
    //freopen("subtree.out","w",stdout);
    cin>>n>>k;
    init();
    for(int i=1;i<=k;i++)
    {
        int x;
        cin>>x;
        unable[x]=1;
    }
    cin>>l>>r;
    for(int i=l;i<=r;i++)
    {
        if(!unable[n])
            printf("%lld ",(dp(n,i)-dp(n,i-1)+mod)%mod);
        else
            printf("0 ");
    }
    putchar('\n');
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值