【计数dp】【组合数学】【多项式exp】子树问题

【题目描述】
求满足条件的n个点有根树数量。
1.父亲编号小于儿子
2.给定序列 a i a_i ai,不能出现大小为 a i a_i ai的子树
对于每个深度 d e p ∈ [ L , R ] dep \in [L,R] dep[L,R]的树,求出答案。
两棵树不同当且仅当存在x满足fa1[x]不等于fa2[x]。

【思路】

这dp其实挺套路的。定义 f [ i ] [ j ] f[i][j] f[i][j]表示i个点的树,深度不超过j 的树的个数。考虑转移,我们枚举子树的情况,可以发现,去掉根节点,这是一个求 i − 1 i-1 i1个点,深度不超过 j − 1 j-1 j1的森林的方案的子问题。我们可以考虑在当前的森林里加一棵树来更新答案。那么设已经得到的森林大小为x,当前枚举要加入的树的大小为y,由于我们要合并两个有标号的集合,所以方案数为 C x + y x C^{x}_{x+y} Cx+yx。可以这样理解:我们从x+y个标号里选择y个给当前要加入的树标号,每一种合法的标号方案都对应了一种节点标号相对顺序相同的给该树标号的一种方案。但是注意到,这里儿子的顺序无关紧要,我们上面的分配标号的方式会导致重复。比如对于一个根节点有左右儿子的三个节点的树,我们会把左儿子分配标号2和标号3两种方案都统计一遍。但事实上根据题目意思这两种方案属于同一种方案。因为这种分配标号的统计方式是对于两个不同的集合分配标号的分配方式。所以我们可以考虑对所有子树按根节点标号排序,这样每种子树就是不同集合了。对于每次按顺序新加入的树,我们钦定它的根的标号在所有子树里最小。由于我们钦定了新加入的树的根节点标号,所以方案数为 C x + y − 1 y − 1 C_{x+y-1}^{y-1} Cx+y1y1。对于一棵大小为n的树,由于父亲编号小于儿子编号,所以它的根节点的标号也是确定的。所以转移方程为:
f [ i ] [ j ] = ∑ k = 1 i − 1 f [ i − k ] [ j − 1 ] ∗ f [ k ] [ j ] ∗ C i − 2 j − 1 f[i][j]=\sum_{k=1}^{i-1} f[i-k][j-1]*f[k][j]*C_{i-2}^{j-1} f[i][j]=k=1i1f[ik][j1]f[k][j]Ci2j1
对于每一个 a i a_i ai的限制,我们只需要把对应大小的子树方案置为0即可。时间复杂度 O ( n 3 ) O(n^3) O(n3)
由于转移方程是卷积的形式,可以使用分治ntt优化至 O ( n 2 l o g 2 n ) O(n^2log^2n) O(n2log2n)。当然,本题还可以用多项式算法把时间优化至 O ( n 2 l o g n ) O(n^2logn) O(n2logn)
[ x n + 1 ] f d ( x ) = ∑ k 1 k ! ∑ ∑ i = 1 k b i = n n ! ∏ i = 1 k b i ! ∏ [ x b i ] f d − 1 ( x ) [x^{n+1}]f_{d}(x)=\sum_k \frac{1}{k!}\sum_{\sum_{i=1}^{k} b_i=n}\frac{n!}{\prod_{i=1}^{k} b_i!}\prod[x^{b_i}]f_{d-1}(x) [xn+1]fd(x)=kk!1i=1kbi=ni=1kbi!n![xbi]fd1(x)
f d ( x ) ′ = e x p ( f d − 1 ( x ) ) 。 f_{d}(x)'=exp(f_{d-1}(x))。 fd(x)=exp(fd1(x))
dp代码:

#include<bits/stdc++.h>
#define re register
#define F(i,a,b) for(int re i=a;i<=b;++i)
#define D(i,a,b) for(int re i=a;i>=b;--i)
using namespace std;
const int N=7e2+5,mod=998244353;
inline int red(){
    int re data=0;bool w=0; char re ch=getchar();
    while(ch!='-' && (ch<'0' || ch>'9')) ch=getchar();
    if(ch=='-') w=1,ch=getchar();
    while(ch>='0' && ch<='9') data=(data<<3)+(data<<1)+ch-'0',ch=getchar();
    return w?-data:data;
}
int n,m,a,b,c[N][N],f[N][N],g[N][N];
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(const int&a,const int&b){return a<b?a-b+mod:a-b;}
inline int mul(const int&a,const int&b){return 1ll*a*b%mod;}
int L,R;
bool vis[N];
int main()
{
	F(i,0,700){
		c[i][0]=1;
		F(j,1,i)c[i][j]=add(c[i-1][j],c[i-1][j-1]);
	}n=red();m=red();
	F(i,1,m)vis[red()]=1;L=red();R=red();
	F(i,1,R)f[1][i]=1;
	F(i,1,n)F(j,1,R)F(k,1,i-1)if(!vis[k])f[i][j]=add(f[i][j],mul(i>1?c[i-2][k-1]:0,mul(f[i-k][j],f[k][j-1])));
	F(i,L,R)cout<<(vis[n]?0:dec(f[n][i],f[n][i-1]))<<" ";
}

多项式代码:(常数巨大,时间大概是dp的2倍) 板子丑,没办法

#include<bits/stdc++.h>
#define re register
#define ri re int
#define F(i,a,b) for(int re i=a;i<=b;++i)
#define D(i,a,b) for(int re i=a;i>=b;--i)
using namespace std;
const int N=1e3+5;
const int mod=998244353;
inline void Add(int&a,int b){(a+=b)>=mod?a-=mod:a;}
inline void Dec(int&a,int b){a=a<b?a-b+mod:a-b;}
inline void Mul(int&a,int b){a=1ll*a*b%mod;}
inline int add(int a,int b){return (a+=b)>=mod?a-=mod:a;}
inline int dec(int a,int b){return a<b?a-b+mod:a-b;}
inline int mul(int a,int b){return 1ll*a*b%mod;}
inline int red(){
    int data=0;int w=1; char ch=0;
    ch=getchar();
    while(ch!='-' && (ch<'0' || ch>'9')) ch=getchar();
    if(ch=='-') w=-1,ch=getchar();
    while(ch>='0' && ch<='9') data=(data<<3)+(data<<1)+ch-'0',ch=getchar();
    return data*w;
}
int lim=1,l;
typedef vector<int> poly;
int *w[50],inw[N];
vector<int>rev[50];
bool done[50];
int Inv[N];
int n,m,L,R,c[N];
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)Mul(ret,a);return ret;}
inline void pre(const int &mx){
	lim=1,l=0;
	while(lim<mx)lim<<=1,++l;
	if(done[l])return;
	done[l]=1;
	rev[l].resize(lim);
	F(i,0,lim-1)rev[l][i]=(rev[l][i>>1]>>1)|((i&1)<<(l-1));
}
inline void ntt(poly&a,int type)
{
	F(i,0,lim-1)if(i<rev[l][i])swap(a[i],a[rev[l][i]]);
	for(int re i=1,t=1,a0,a1;i<lim;i<<=1,++t)
		for(int re j=0,len=i<<1;j<lim;j+=len)
			F(k,0,i-1)a0=a[j+k],a1=mul(a[j+k+i],w[t][k]),a[j+k]=add(a0,a1),a[j+k+i]=dec(a0,a1);
	if(~type)return;
	reverse(a.begin()+1,a.end());
	F(i,0,lim-1)Mul(a[i],inw[l]);
}
inline poly operator*(poly a,poly b)
{
	int n=a.size(),m=b.size(),t=n+m-1;
	if(t<=128){
		poly c(t);
		F(i,0,n-1)F(j,0,m-1)
			Add(c[i+j],mul(a[i],b[j]));
		return c;
	}
	pre(t);
	a.resize(lim),ntt(a,1);
	b.resize(lim),ntt(b,1);
	F(i,0,lim-1)Mul(a[i],b[i]);
	ntt(a,-1);a.resize(t);
	return a;
}
inline poly inv(poly a,const int &k)
{
	poly c,b(1,ksm(a[0],mod-2));
	for(int re i=4,up=k<<2;i<up;i<<=1)
	{
		pre(i);
		c=a,c.resize(i>>1);
		c.resize(lim),ntt(c,1);
		b.resize(lim),ntt(b,1);
		for(int re j=0;j<lim;j++)Mul(b[j],dec(2,mul(b[j],c[j])));
		ntt(b,-1);b.resize(i>>1);
	}
	return b.resize(k),b;
}
inline poly inter(poly a){
	a.push_back(0);
	D(i,a.size()-1,1)a[i]=mul(a[i-1],Inv[i]);
	return a[0]=0,a;
}
inline poly dir(poly a){
	for(int re i=0,up=a.size()-1;i<up;++i)a[i]=mul(a[i+1],i+1);
	return a.pop_back(),a;
}
inline poly ln(poly a,const int &k){return a=inter(dir(a)*inv(a,k)),a.resize(k),a;}
inline poly exp(poly a,const int &k){
	poly b(1,1),c;
	a.resize(k<<1);
	for(int re i=2,up=k<<1;i<up;i<<=1){
		c=ln(b,i);
		F(j,0,i-1)c[j]=dec(a[j],c[j]);
		Add(c[0],1);b=b*c,b.resize(i);
	}
	return b.resize(k),b;
}
int fac[N]={1,1};
inline void init(){
	Inv[1]=1;int mx=n<<1;inw[0]=1;
	F(i,1,n)fac[i]=mul(fac[i-1],i);
	F(i,2,mx)Inv[i]=mul(Inv[mod%i],(mod-mod/i));
	for(int re i=1,mt=mod+1>>1;i<23;i++)inw[i]=mul(inw[i-1],mt);
	F(i,1,23)w[i]=new int[1<<(i-1)];
	int w0=ksm(3,(mod-1)>>23);
	w[23][0]=1;
	for(int re i=1,up=1<<22;i<up;++i)w[23][i]=mul(w[23][i-1],w0);
	D(i,22,1)
		for(int re j=0,up=1<<(i-1);j<up;++j)
			w[i][j]=w[i+1][j<<1]; 
}
poly a,b;
int ans[N];
int main(){
	n=red();m=red();init();
	F(i,1,m)c[i]=red();
	L=red();R=red();
	a.resize(n+1);b.resize(n+1);
	a[1]=1;ans[1]=a[n];
	F(i,2,R){
		b=inter(exp(a,n+1));b.resize(n+1);
		F(j,1,m)b[c[j]]=0;a=b;ans[i]=b[n];
	}F(i,L,R)cout<<mul(dec(ans[i],ans[i-1]),fac[n])<<" ";
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值