Miller Rabin 素数测试

Miller Rabin 素数测试

Miller Rabin 是一种快速判断素数的方法。有非常小的概率可能出错。

费马小定理和二次探测

Miller Rabin 素数测试主要就是用到了以上两个理论。

费马小定理: 如果 p p p为质数,那么有 a p − 1 ≡ 1    m o d    p a^{p-1} ≡1~~mod~~ p ap11  mod  p

二次探测: 对于质数 p p p,如果 a 2 ≡ 1    m o d    p a^2 ≡ 1~~mod~~p a21  mod  p,那么 a ≡ 1 a ≡ 1 a1 a ≡ p − 1 a ≡ p-1 ap1

证明请自行百度。

判断 p p p是否为质数

我们利用以上两个理论来进行素数判断

  1. 如果 p p p 为偶数且不为 2 2 2,我们可以直接判断出来

  2. p − 1 p-1 p1分解成 2 k × t 2^k\times t 2k×t的形式,记录下 k , t k,t k,t

  3. 对于一个数 a a a,我们首先求出 a t a^t at,然后进行二次探测,每次将 a a a 平方,二次探测 k k k

  4. 如果以上全通过且满足费马小定理,那么我们判断 p p p为质数

  5. 只选一个 a a a有很大概率出错,所以一般多选几个(竞赛用2,3,5,7,11,13,17,19,23即可),且尽量选质数

注意:可能会爆long long,所以要采用快速乘。

期望时间复杂度: O ( n 1 4 ) O(n^{\frac{1}{4}}) O(n41)

C o d e \mathcal{Code} Code

/*******************************
Author:galaxy yr
LANG:C++
Created Time:2019年11月06日 星期三 19时24分57秒
*******************************/
#include<cstdio>
#include<algorithm>

using namespace std;

struct IO{
    template<typename T>
    IO & operator>>(T&res)
    {
        T q=1;char ch;
        while((ch=getchar())<'0' or ch>'9')if(ch=='-')q=-q;
        res=(ch^48);
        while((ch=getchar())>='0' and ch<='9') res=(res<<1)+(res<<3)+(ch^48);
        res*=q;
        return *this;
    }
}cin;

const int primes[]={2,3,5,7,11,13,17,19,23};
const int SIZE=9;

long long mul(long long a,long long b,long long mod)
{
    long long ans=0;
    while(b)
    {
        if(b&1)
            ans=(ans+a)%mod;
        a=(a+a)%mod;
        b>>=1;
    }
    return ans;
}

long long ksm(long long a,long long b,long long mod)
{
    long long res=1;
    while(b)
    {
        if(b&1)
            res=mul(res,a,mod);
        a=mul(a,a,mod);
        b>>=1;
    }
    return res;
}

bool Miller_Rabin(long long x)
{
    if(!(x&1))return false;
    long long tmp=x-1,s=0,k,nxt;
    while(!(tmp&1))s++,tmp>>=1;
    for(int i=0;i<SIZE;i++)
    {
        if(x==primes[i]) return true;
        k=ksm(primes[i],tmp,x);
        for(int j=1;j<=s;j++)
        {
            nxt=mul(k,k,x);
            if(nxt==1 && k!=1 && k!=x-1)
                return false;
            k=nxt;
        }
        if(k!=1) return false;
    }
    return true;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值