网上搜莫比乌斯函数大多都没有写莫比乌斯函数的由来,而是直接写的定义式,这里对莫比乌斯函数进行推导。
学习了狄利克雷卷积后,我们来看以下几个常见的积性函数:
常函数: I ( n ) = 1 I(n)=1 I(n)=1
单位元: ξ ( n ) = [ n = 1 ] ( ξ ∗ f = f ) \xi(n)=[n=1] (\xi*f=f) ξ(n)=[n=1](ξ∗f=f)
莫比乌斯函数
对于一个数我们可以对其求逆,那么函数是否也可以求逆呢?答案是肯定的。我们看下面式子:
f − 1 ∗ f = ξ f^{-1}*f=\xi f−1∗f=ξ
f − 1 f^{-1} f−1即是我们要的 f f f的逆。
f − 1 ∗ f = x i f^{-1}*f=xi f−1∗f=xi
⇓ \Downarrow ⇓
∀ n : ∑ d ∣ n f ( d ) ∗ f − 1 ( n d ) = [ n = 1 ] \forall n:\sum_{d|n}{f(d)*f^{-1}(\frac{n}{d})=[n=1]} ∀n:∑d∣nf(d)∗f−1(dn)=[n=1]
若n=1
f − 1 ( 1 ) = 1 f ( 1 ) f^{-1}(1)=\frac{1}{f(1)} f−1(1)=f(1)1
若n = ̸ 1 =\not1 ≠1
f − 1 ( n ) ∗ f ( n ) = x i ( n ) f^{-1}(n)*f(n)=xi(n) f−1(n)∗f(n)=xi(n)
f − 1 ( n ) ∗ f ( n ) = 0 f^{-1}(n)*f(n)=0 f−1(n)∗f(n)=0
∑ d ∣ n f ( d ) ∗ f − 1 ( n d ) = 0 \sum_{d|n}{f(d)*f^{-1}(\frac{n}{d})}=0 d∣n∑f(d)∗f−1(dn)=0
将d=1从公式中提出来:
f
(
1
)
∗
f
−
1
(
n
)
+
∑
d
∣
n
f
(
d
)
∗
f
−
1
(
n
d
)
=
0
(
d
̸
=
1
)
f(1)*f^{-1}(n)+\sum_{d|n}{f(d)*f^{-1}(\frac{n}{d})}=0 (d\not=1)
f(1)∗f−1(n)+d∣n∑f(d)∗f−1(dn)=0 (d̸=1)
f − 1 ( n ) = − ∑ d ∣ n f ( d ) ∗ f − 1 ( n d ) f ( 1 ) ( d ̸ = 1 ) f^{-1}(n)=\frac{-\sum_{d|n}{f(d)*f^{-1}(\frac{n}{d})}}{f(1)} (d\not=1) f−1(n)=f(1)−∑d∣nf(d)∗f−1(dn) (d̸=1)
f f f的逆即为这个式子了
那么接下来我们试试把 f = I f=I f=I,n为质数的逆求出来试试:
f − 1 ( p ) = − f ( p ) ∗ f − 1 ( 1 ) f ( 1 ) = − 1 f^{-1}(p)=\frac{-f(p)*f^{-1}(1)}{f(1)}=-1 f−1(p)=f(1)−f(p)∗f−1(1)=−1
看看 p 2 p^2 p2:
f − 1 ( p 2 ) = − ( f ( p 2 ) ∗ f − 1 ( 1 ) + f ( p ) ∗ f − 1 ( p ) ) = 0 f^{-1}(p^2)=-(f(p^2)*f^{-1}(1)+f(p)*f^{-1}(p))=0 f−1(p2)=−(f(p2)∗f−1(1)+f(p)∗f−1(p))=0
推广到 p k p^k pk
f − 1 ( p k ) = − ∑ i = 1 k f ( p i ) ∗ f − 1 ( p k − i ) f^{-1}(p^k)=-\sum_{i=1}^{k}{f(p^i)*f^{-1}(p^{k-i})} f−1(pk)=−∑i=1kf(pi)∗f−1(pk−i)
不难看出:当k>1时, f ( p k ) f(p^k) f(pk)就等于0了
所以对于合数 n = p 1 a 1 p 2 a 2 . . . p k a k n=p_1^{a_1}p_2^{a_2}...p_k^{a^k} n=p1a1p2a2...pkak 有
f − 1 ( n ) = f − 1 ( p 1 a 1 ) f − 1 ( p 2 a 2 ) . . . f − 1 ( p k a k ) f^{-1}(n)=f^{-1}(p_1^{a_1})f^{-1}(p_2^{a_2})...f^{-1}(p_k^{a_k}) f−1(n)=f−1(p1a1)f−1(p2a2)...f−1(pkak) ( I − 1 I^{-1} I−1 为积性函数)
(积性函数的逆也是积性函数)
证明:
设
f
f
f为积性函数,有
f
(
i
∗
j
)
=
f
(
i
)
∗
f
(
j
)
f(i*j)=f(i)*f(j)
f(i∗j)=f(i)∗f(j)
f
(
i
∗
j
)
∗
f
−
1
(
i
∗
j
)
=
ξ
f(i*j)*f^{-1}(i*j)=\xi
f(i∗j)∗f−1(i∗j)=ξ
f
(
i
)
∗
f
−
1
(
i
)
∗
f
(
j
)
∗
f
−
1
(
j
)
=
ξ
f(i)*f^{-1}(i)*f(j)*f^{-1}(j)=\xi
f(i)∗f−1(i)∗f(j)∗f−1(j)=ξ
联立得:
f
(
i
∗
j
)
∗
f
−
1
(
i
∗
j
)
=
f
(
i
)
∗
f
−
1
(
i
)
∗
f
(
j
)
∗
f
−
1
(
j
)
f(i*j)*f^{-1}(i*j)=f(i)*f^{-1}(i)*f(j)*f^{-1}(j)
f(i∗j)∗f−1(i∗j)=f(i)∗f−1(i)∗f(j)∗f−1(j)
f
−
1
(
i
∗
j
)
=
f
−
1
(
i
)
∗
f
−
1
(
j
)
f^{-1}(i*j)=f^{-1}(i)*f^{-1}(j)
f−1(i∗j)=f−1(i)∗f−1(j)
证毕
如果 a n > 1 a_n>1 an>1那么 f ( n ) = 0 f(n)=0 f(n)=0
设 f − 1 = μ ( I − 1 = μ ) f^{-1}=\mu(I^{-1}=\mu) f−1=μ(I−1=μ),则有:
μ = { 1 n = 1 ( − 1 ) k a 1 = a 2 = . . . = a k = 1 0 o t h e r w i s e \mu = \begin{cases} 1 n=1\\ (-1)^k a^1=a^2=...=a^k=1\\ 0 otherwise\\ \end{cases} μ=⎩⎪⎨⎪⎧1 n=1(−1)k a1=a2=...=ak=10 otherwise
这个便是我们所知的莫比乌斯函数了。
积性函数的逆也是积性函数。
由我们的推导可知:
μ ∗ I = ξ ξ ∗ f = f \mu*I=\xi \xi*f=f μ∗I=ξ ξ∗f=f
设 f ∗ I = g f*I=g f∗I=g
f
∗
I
∗
μ
=
g
∗
μ
f*I*\mu=g*\mu
f∗I∗μ=g∗μ
公式
- g ( n ) = ∑ d ∣ n f ( d ) ⇐ ⇒ f ( n ) = ∑ d ∣ n μ ( d ) g ( n d ) g(n)=\sum_{d|n}{f(d)} \Leftarrow\Rightarrow f(n)=\sum_{d|n}{\mu(d)g(\frac{n}{d})} g(n)=∑d∣nf(d) ⇐⇒ f(n)=∑d∣nμ(d)g(dn)
- g ( n ) = ∑ n ∣ d f ( d ) ⇐ ⇒ f ( n ) = ∑ n ∣ d μ ( d ) g ( d n ) g(n)=\sum_{n|d}{f(d)} \Leftarrow\Rightarrow f(n)=\sum_{n|d}{\mu(d)g(\frac{d}{n})} g(n)=∑n∣df(d) ⇐⇒ f(n)=∑n∣dμ(d)g(nd)
证明
方法一:逆推
-
∑ d ∣ n μ ( d ) g ( n d ) = ∑ d ∣ n μ ( d ) ∑ x ∣ n d f ( x ) = ∑ x ∣ n f ( x ) ∑ d ∣ n x μ ( d ) = ∑ x ∣ n f ( x ) [ n x = 1 ] = f ( n ) \sum_{d|n}{\mu(d)g(\frac{n}{d})}=\sum_{d|n}{\mu(d)\sum_{x|\frac{n}{d}}{f(x)}=\sum_{x|n}{f(x)}\sum_{d|\frac{n}{x}}{\mu(d)}=\sum_{x|n}{f(x)[\frac{n}{x}=1]}}=f(n) d∣n∑μ(d)g(dn)=d∣n∑μ(d)x∣dn∑f(x)=x∣n∑f(x)d∣xn∑μ(d)=x∣n∑f(x)[xn=1]=f(n)
-
第二个式子同理
方法二:卷积法(因为好多人不知道
μ
\mu
μ的性质所以不知道这点)
g
=
f
∗
I
g=f*I
g=f∗I
g
∗
μ
=
f
∗
I
∗
μ
g*\mu=f*I*\mu
g∗μ=f∗I∗μ
g
∗
μ
=
f
∗
ξ
g*\mu=f*\xi
g∗μ=f∗ξ
g
∗
μ
=
f
g*\mu=f
g∗μ=f
得证