Event driven agentic document workflows 笔记 - 2

代理文档工作流(ADW)- 课程笔记

Agentic Document Workflows (ADW)

1. 课程目标

  • 介绍 代理文档工作流(ADW) 背后的核心概念,包括:
    • RAG(检索增强生成)
    • 代理
    • 工作流
  • 探讨如何利用 事件驱动的文档处理 来增强 RAG。

2. RAG(检索增强生成)

2.1 RAG 的背景

  • LLM 的限制
    • 训练于大规模数据,但不包括用户的专属数据。
    • 需要提供额外数据,但受限于上下文窗口(最多处理百万级 token)。
    • 组织通常拥有海量数据(千万/亿级),需选择最相关的数据提供给 LLM。

2.2 解决方案:嵌入模型

  • 嵌入模型:将文本数据转换为向量(数字数组),存储于向量数据库
  • 检索流程
    1. 用户问题被转换为向量。
    2. 通过向量搜索,查找最相关的数据。
    3. 相关数据与查询一起提供给 LLM 生成回答。

2.3 RAG 的局限性

  • 复杂或多部分问题:
    • RAG 依赖搜索,如果问题包含多个部分,检索结果可能不够集中。
    • 解决方案:将复杂问题拆解为多个子问题,各自检索后合并答案。

3. 代理(Agent)

  • 定义:在 LlamaIndex 中,代理是一个半自主的软件,可以:
    • 被赋予工具和目标。
    • 自主规划如何解决问题,而非逐步执行预设指令。
  • 对比传统编程
    • 传统编程:精确定义每一步。
    • 代理:依靠目标驱动和工具,动态决策执行方式。

4. 代理的实现方式:工作流(Workflow)

  • 工作流的作用

    • 代理系统的构建块
    • 采用事件驱动机制,定义一系列相互连接的步骤
    • 信息在步骤间传递,实现分支、循环、并行执行等复杂逻辑。
  • 不同代理框架的对比

    • 无结构代理:灵活但易产生混乱结果。
    • 基于图的代理:难以实现循环等动态控制。
    • LlamaIndex 工作流:提供既有灵活性,又有结构化支持的最佳平衡。

5. 代理文档工作流(ADW)

  • 定义:基于 RAG + 代理 + 事件驱动工作流 的软件构建方法。
  • 与 RAG 的区别
    • RAG 适用于简单问题,返回文本回答
    • ADW 适用于复杂问题,可生成结构化输出

6. 课程后续安排

  • 了解 ADW 的核心概念后,下一课将开始构建代理文档工作流
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值