数据结构与算法
文章平均质量分 62
草明
这个作者很懒,什么都没留下…
展开
-
布隆过滤器(Bloom Filter)
布隆过滤器本身不支持更新或删除操作,这是因为它的结构决定了无法安全地删除或修改一个元素而不影响其他元素。对于需要删除或更新数据的场景,可以考虑使用计数布隆过滤器、定期重建布隆过滤器或将布隆过滤器与其他数据结构结合使用。这些解决方案可以在保持较高查询效率的同时,适应数据变化的需求。原创 2024-10-08 14:31:58 · 860 阅读 · 0 评论 -
倒排索引 vs 正排索引
正排索引适用于需要快速访问和查询文档内容的场景,常用于关系数据库等数据存储。倒排索引则适用于需要快速全文检索的场景,是搜索引擎和信息检索系统的核心数据结构。原创 2024-08-15 15:48:28 · 590 阅读 · 0 评论 -
Z分数标准化
通过这样的调整,可以确保Z分数标准化后的数据集具有平均值为0,标准差为1的特性,使得数据更符合标准正态分布。这种标准化方法不仅有助于比较不同数据集的值,还可以提高机器学习模型的性能和稳定性。Z分数标准化是一种常用的数据标准化方法,用于将不同数据集的值转换为具有相同比例和零均值、标准差为1的标准正态分布。这种标准化方法对于机器学习和统计分析中的特征缩放和数据预处理非常有用。原创 2024-02-19 02:45:00 · 1194 阅读 · 0 评论 -
NLP-词袋模型
词袋模型是自然语言处理中常用的一种文本表示方法,用于将文本转换为数值型向量,以便于计算机进行处理和分析。在词袋模型中,文本被看作是一个由词语组成的集合,而每个词语都是独立的,不考虑它们在文本中的顺序和语境关系。因此,词袋模型将文本表示为一个固定长度的向量,其中每个维度对应一个词语,该维度的值表示该词语在文本中出现的频次或者其他统计量。因此,在某些任务中,词袋模型可能无法取得很好的效果,需要结合其他模型或方法来进一步提高性能。原创 2024-02-18 13:33:46 · 802 阅读 · 0 评论 -
强化学习 - Deep Reinforcement Learning from Human Preferences (DRLHP)
Deep Reinforcement Learning from Human Preferences” (DRLHP) 这个具体的方法可能是一种在深度强化学习中使用人类偏好信息的技术。原创 2024-02-01 22:43:49 · 617 阅读 · 0 评论 -
强化学习 - Monte Carlo Tree Search (MCTS)
强化学习中的Monte Carlo Tree Search (MCTS) 是一种用于决策制定和搜索的算法,特别在不确定环境下表现出色。原创 2024-02-01 22:37:28 · 1112 阅读 · 0 评论 -
强化学习 - Deep Deterministic Policy Gradient (DDPG)
在这个例子中,我们定义了一个简单的DDPG Agent,包括演员(Actor)和评论家(Critic)两个神经网络。在训练过程中,我们使用了两个目标网络来提高稳定性,并进行了软更新。)是一种用于解决连续动作空间的强化学习问题的算法。DDPG结合了深度学习和策略梯度方法,用于学习一个确定性策略。它适用于具有高维状态空间和连续动作空间的问题。请注意,DDPG算法的实现可能因问题的复杂性而有所不同,可能需要更多的技术和调整,如归一化奖励、使用更复杂的神经网络结构等。在这个例子中,我们将使用。原创 2024-01-27 06:45:00 · 468 阅读 · 0 评论 -
强化学习 - Trust Region Policy Optimization (TRPO)
在这个例子中,我们定义了一个简单的TRPO Agent,包括演员(Actor)神经网络。在训练过程中,我们使用TRPO算法来更新演员网络的参数。请注意,TRPO算法的实现可能因问题的复杂性而有所不同,可能需要更多的技术和调整,如归一化奖励、使用更复杂的神经网络结构等。旨在通过限制策略更新的大小,提高训练的稳定性。这样可以防止在参数空间中迅速迭代导致过大的更新,从而保持策略在相邻状态上的相似性。)是一种策略梯度方法,用于解决强化学习问题。在这个例子中,我们将使用。以下是一个使用 Python 和。原创 2024-01-28 07:00:00 · 773 阅读 · 0 评论 -
强化学习 - Twin Delayed DDPG (TD3)
在这个例子中,我们定义了一个简单的TD3 Agent,包括演员(Actor)和两个评论家(Critic)神经网络。在训练过程中,我们使用了两个评论家网络和一些技巧来提高稳定性,并进行了软更新。请注意,TD3算法的实现可能因问题的复杂性而有所不同,可能需要更多的技术和调整,如归一化奖励、使用更复杂的神经网络结构等。) 是一种用于解决连续动作空间的强化学习问题的算法,是。在这个例子中,我们将使用。以下是一个使用 Python 和。,以提高算法的性能和稳定性。引入了一些技巧,例如。原创 2024-01-28 05:15:00 · 906 阅读 · 0 评论 -
强化学习 - Proximal Policy Optimization (PPO)
在这个例子中,我们定义了一个简单的Proximal Policy Optimization(PPO)Agent,包括演员(Actor)和评论家(Critic)两个神经网络。在训练过程中,我们通过PPO算法来更新演员网络和评论家网络的参数。请注意,PPO算法的实现可能因问题的复杂性而有所不同,可能需要更多的技术和调整,如归一化奖励、使用更复杂的神经网络结构等。PPO的目标是通过优化代理的策略函数来最大化期望累积奖励。)来限制新策略相对于旧策略的更新幅度,从而提高训练的稳定性。在这个例子中,我们将使用。原创 2024-01-27 06:15:00 · 906 阅读 · 0 评论 -
强化学习 - Actor-Critic(演员-评论家算法)
Agent在每个时间步中通过演员网络选择动作,然后通过评论家网络进行训练。演员网络输出动作的概率,评论家网络输出当前状态的值。实现简单的Actor-Critic算法的示例。在这个例子中,我们将使用 O。算法的实现可能因问题的复杂性而有所不同,可能需要更多的技术和调整,如。)学习策略,决定在给定状态下应该采取什么动作;)学习值函数,评估当前状态的价值。以下是一个使用 Python 和。在这个例子中,我们定义了一个简单的。(演员-评论家算法)是一种结合了。原创 2024-01-26 04:00:00 · 819 阅读 · 0 评论 -
强化学习 - Policy Gradient Methods(策略梯度方法)
Agent的策略函数是一个神经网络,接收状态作为输入并输出在每个动作上的概率。在每个时间步,Agent根据策略函数采样动作,并通过策略梯度算法来更新网络参数。,即对未来的回报进行了折扣。这有助于更重视较早的动作,从而引导Agent更好地进行学习。(Policy Gradient Methods)是一类用于。在这个例子中,我们使用了策略梯度方法的一个简单形式,在这个例子中,我们将使用。此外,实际应用中可能需要更多的技术和调整,如。以下是一个使用 Python 和。这种方法的核心思想是。原创 2024-01-25 03:15:00 · 556 阅读 · 0 评论 -
强化学习 - Deep Q Network (DQN)
请注意,DQN的具体实现可能因问题的复杂性而有所不同,而且可能需要更多的技术来提高稳定性和性能,如。训练过程中,Agent通过经验回放(experience replay)来学习,并使用。请注意,这是一个基本的实现,实际应用中可能需要进行更多的优化和调整。团队提出的,首次应用于解决Atari游戏,但也被广泛用于其他领域,如。,Agent逐渐学习到达得分较高的策略。以下是一个使用Python和。的神经网络模型使用简单的。在这个例子中,我们使用。原创 2024-01-25 07:00:00 · 775 阅读 · 0 评论 -
强化学习 - Q-learning(Q学习)
的实现教程,使用 Python 进行演示。这里我们考虑一个简单的驾驶代理程序在一个格子世界中学习如何最优地选择动作以达到目标。在这个例子中,我们定义了一个简单的格子世界,其中代理程序在不同的状态之间移动,选择上、下、左、右四个动作。它是基于值函数的方法,通过学习一个值函数 Q,该函数表示在给定状态和动作下,期望的累积奖励。示例,实际应用中可能涉及到更复杂的环境和状态。学习在每个状态下选择每个动作的。策略选择动作,执行动作后更新。请注意,这只是一个简化的。),是实现良好性能的关键。(Q学习)是一种用于。原创 2024-01-24 07:00:00 · 1006 阅读 · 0 评论 -
无监督学习 - 聚类的潜在语义分析(Latent Semantic Analysis,LSA)
(Latent Semantic Analysis,LSA)是一种无监督学习方法,用于在文本数据中发现潜在的语义结构。LSA 的主要应用之一是进行文本文档的和。以下是一个使用 Python 中的库来实现潜在语义分析(LSA)的简单教程。原创 2024-01-24 05:15:00 · 532 阅读 · 0 评论 -
无监督学习 - 非负矩阵分解(Non-negative Matrix Factorization,NMF)
(Non-negative Matrix Factorization,NMF)是一种无监督学习算法,用于。NMF 在等领域都有广泛的应用,特别适用于处理非负数据。以下是一个使用 Python 中的库来实现NMF的简单教程。原创 2024-01-23 04:30:00 · 670 阅读 · 0 评论 -
无监督学习 - 高斯混合模型(Gaussian Mixture Model,GMM)
(Gaussian Mixture Model,GMM)是一种无监督学习方法,用于。它被广泛应用于等领域。GMM 假设数据是由多个高斯分布组成的混合体,每个高斯分布代表一个聚类。下面是一个使用 Python 中的库来实现GMM的简单教程。原创 2024-01-23 05:15:00 · 827 阅读 · 0 评论 -
无监督学习 - 关联规则学习(Association Rule Learning)
(Association Rule Learning)是一种无监督学习方法,用于。这种方法通常用于或者购物篮中的商品,以便找出经常一起购买的商品。一个经典的关联规则的例子是"如果顾客购买了牛奶,那么他们也很可能购买面包"。Apriori算法是一种常用的关联规则学习算法。下面是一个简单的教程,演示如何使用 Python 中的mlxtend库来实现关联规则学习。原创 2024-01-22 10:13:17 · 641 阅读 · 0 评论 -
无监督学习 - 自编码器(Autoencoder)
自编码(Autoencoder)是一种,通常用于学习输入数据的压缩表示,然后再从该表示中重建原始数据。自编码器由编码器和解码器两部分组成,它们的目标是最小化输入数据和重建数据之间的差异。以下是一个简单的自编码器的详细教程。原创 2024-01-22 10:07:53 · 626 阅读 · 0 评论 -
模型的 PSI(Population Stability Index)
PSI(Population Stability Index)是一种用于评估两个数据集或时间点之间的分布变化的指标。PSI的计算基于两个分布的累积分布函数(CDF)之间的差异。PSI的值越大,表示两个时间点或群体之间的分布变化越大,模型在不同时间点或群体上的预测稳定性越差。请注意,PSI 的计算方法可能因具体业务场景而异,上述示例代码仅提供了一种通用的计算方法。在模型监测和评估的背景下,通常将 PSI 用于检测模型在不同时间点或群体上的预测稳定性,尤其是在评估模型在生产环境中的性能变化时。原创 2024-01-22 05:15:00 · 2080 阅读 · 0 评论 -
模型的 AUC(Area Under the Receiver Operating Characteristic Curve)
的指标,主要用于度量模型在不同阈值下的整体性能。ROC曲线是以不同的分类阈值为基础,绘制出模型的真正例率(True Positive Rate,又称为召回率)与假正例率(False Positive Rate)之间的关系。在一些机器学习框架和库中,计算AUC的函数通常已经包含在性能评估工具中。其中,y_true是实际的二分类标签,y_scores是模型预测的概率或分数。AUC即ROC曲线下的面积,其。函数来计算AUC值。原创 2024-01-16 10:50:05 · 807 阅读 · 0 评论 -
模型的 KS(Kolmogorov-Smirnov)
KS(Kolmogorov-Smirnov)统计量是一种用于评估二分类模型性能的指标,主要用于评估模型在正例和负例之间的区分度。KS统计量通过累积分布函数(CDF)的差异来衡量模型对正负样本的区分程度。在某些场景中,KS值也被用于评估模型在不同阈值下的性能。例如,通过在不同概率或分数阈值下计算KS值,可以选择一个最佳的阈值来平衡模型的精确率和召回率。在一些机器学习框架和库中,计算KS值的函数通常已经包含在性能评估工具中。原创 2024-01-21 08:15:00 · 1304 阅读 · 0 评论 -
模型的 F1 分数
要计算模型的 F1 分数,首先需要计算模型的精确率和召回率,然后使用上述公式计算 F1 分数。在一些机器学习框架和库中,计算 F1 分数的函数通常已经包含在性能评估工具中。在实际应用中,F1 分数通常用于那些需要在模型的精确性和召回率之间取得平衡的场景。例如,在某些医学诊断任务中,既希望模型能够尽可能准确地识别正例,又希望不漏报任何实际正例,这时 F1 分数就成为一个重要的评估指标。模型的 F1 分数是一个综合评估模型性能的指标,同时考虑了模型的精确率(Precision)和召回率(Recall)。原创 2024-01-20 05:30:00 · 1042 阅读 · 0 评论 -
模型的召回率(Recall)
在实际应用中,召回率对于那些对错过正例(漏报)比较敏感的场景非常重要,例如在医学领域中,对于一些疾病的诊断,遗漏病例可能导致严重的后果。然而,召回率的提高通常会伴随着假正例(False Positives)的增加,因此在一些场景中需要在召回率和准确率之间进行权衡。召回率(Recall),也称为灵敏度(Sensitivity)或真正例率(True Positive Rate),是用于评估二分类模型性能的指标之一。召回率衡量了模型正确识别正例的能力,即在所有实际正例中,模型成功识别的比例。原创 2024-01-20 07:45:00 · 2566 阅读 · 0 评论 -
无监督学习 - t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)
(t-Distributed Stochastic Neighbor Embedding,t-SNE)是一种非线性降维技术,用于将高维数据映射到低维空间,以便更好地可视化数据的结构。t-SNE主要用于聚类分析和可视化高维数据的相似性结构,特别是在探索复杂数据集时非常有用。原创 2024-01-19 04:30:00 · 958 阅读 · 0 评论 -
无监督学习 - 主成分分析(Principal Component Analysis,PCA)
是一种常用的方法,用于降低数据维度并发现数据中的主要结构。PCA的目标是通过线性变换将原始数据投影到一个新的坐标系,使得数据在新坐标系中的方差尽可能大,从而保留数据的主要信息。原创 2024-01-18 12:00:00 · 558 阅读 · 0 评论 -
无监督学习 - DBSCAN(Density-Based Spatial Clustering of Applications with Noise)
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种无监督学习的密度聚类算法,其主要思想是基于数据点的密度来进行聚类。DBSCAN能够发现具有相对高密度的区域,并能够识别低密度区域作为噪声。该算法的优势在于对数据分布的形状没有先验要求,并且不需要预先指定簇的数量。原创 2024-01-19 06:45:00 · 459 阅读 · 0 评论 -
无监督学习 - 层次聚类(Hierarchical Clustering)
聚类算法,它以(层次结构)的形式组织数据集中的样本...原创 2024-01-18 07:15:00 · 504 阅读 · 0 评论 -
无监督学习 - 均值聚类(K-Means Clustering)
K-Means聚类是一种无监督学习算法,用于将数据集分成K个不同的组(簇),每个组内的数据点与组内其他点的相似度较高,而与其他组内的点相似度较低。聚类的优点包括简单、高效,对于大型数据集也是相对可行的。然而,它也有一些缺点,比如对于簇形状不规则或大小差异较大的数据集,表现可能不佳。此外,K值的选择通常需要一些经验或者通过其他方法进行评估,比如肘部法则(Elbow Method)。这只是一个简单的例子,实际应用中需要根据数据集的特点和需求进行调整和优化。下面是使用Python中的。原创 2024-01-17 05:30:00 · 588 阅读 · 0 评论 -
半监督学习 - 半监督生成对抗网络(Semi-Supervised GANs)
半监督生成对抗网络(Semi-Supervised GANs)是一种结合生成对抗网络(GANs)和半监督学习的方法。在这种方法中,通过同时使用有标签和无标签的数据,模型旨在提高生成模型和判别模型的性能,以在生成新样本和分类任务上都取得良好的表现。以下是半监督生成对抗网络的基本思想和组成部分:半监督生成对抗网络是半监督学习领域的一个有趣且有效的方法,尤其适用于数据集中有大量未标签数据的情况。原创 2024-01-17 08:30:00 · 1396 阅读 · 0 评论 -
半监督学习 - 三元组学习(Triplet Learning)
(Triplet Learning)是中一种用于学习有用表示的方法。它通常用于学习数据中的相似性关系,尤其在人脸识别、图像检索等领域中得到广泛应用。是通过构造三元组(triplet)来训练模型,每个三元组包含一个(anchor sample)、一个(positive sample)和一个。原创 2024-01-16 09:00:00 · 966 阅读 · 0 评论 -
半监督学习 - 自监督学习(Self-Supervised Learning)
自监督学习既不是纯粹的半监督学习,也不是纯粹的无监督学习,而是介于两者之间的一种学习范式。在自监督学习中,模型从数据本身中生成标签,而不是依赖外部的人工标签。这使得自监督学习可以利用未标签的大量数据进行训练,同时也可以通过生成的任务来学习有用的表示。在半监督学习中,自监督学习是一种特殊的方法,其中模型通过自己创建标签并使用这些标签进行训练。自监督学习的目标是通过模型自身在任务中生成的信息来学习有用的表示,而不依赖于外部标签。原创 2024-01-16 06:00:00 · 524 阅读 · 0 评论 -
半监督学习 - 半监督聚类(Semi-Supervised Clustering)
是一种集成了有标签数据和无标签数据的聚类方法,其目标是在聚类的过程中利用有标签数据的信息来提高聚类性能。在半监督聚类中,一部分数据集有已知的标签,而另一部分没有标签。原创 2024-01-15 06:15:00 · 1606 阅读 · 0 评论 -
半监督学习 - 半监督支持向量机(Semi-Supervised Support Vector Machines)
(Semi-Supervised Support Vector Machines,S3VM)是支持向量机(SVM)的一种扩展,旨在处理训练数据中只有少量样本被标记的情况。与传统的监督SVM不同,S3VM通过结合有标签数据和无标签数据来提高分类器的性能。原创 2024-01-15 06:00:00 · 1106 阅读 · 0 评论 -
深度生成模型(Deep Generative Models)
(Deep Generative Models)是一类利用方法生成新样本的模型。这些模型通常被用于生成与训练数据集相似的新数据,例如图像、文本或音频。深度生成模型的两个主要类型是(GANs)和(VAEs)。原创 2024-01-13 06:15:00 · 1744 阅读 · 0 评论 -
半监督学习 - 半监督K均值(Semi-Supervised K-Means)
(Semi-Supervised K-Means)是,它结合了和进行。在传统的K均值算法中,所有数据点都是无标签的,而在半监督K均值中,我们允许一部分数据点有标签,而另一部分数据点没有标签。原创 2024-01-14 06:00:00 · 853 阅读 · 0 评论 -
半监督学习 - 自训练(Self-training)
(Self-training)是一种利用已标记数据和未标记数据进行模型训练的方法。原创 2024-01-12 11:03:34 · 1043 阅读 · 0 评论 -
监督学习 - 多层感知机回归(Multilayer Perceptron Regression,MLP Regression)
(Multilayer Perceptron Regression,MLP Regression)是一种。(Artificial Neural Network,ANN)的形式,用于解决。多层感知机是一种包含多个层次的神经网络结构,其中包括。(最大迭代次数)等。这些参数可以根据实际问题进行调整。在实际应用中,可以使用深度学习框架(如。模型来实现多层感知机回归。)或者高层次的机器学习库(如。(隐藏层中的神经元数量)、原创 2024-01-13 06:00:00 · 2915 阅读 · 0 评论 -
监督学习 - 梯度提升回归(Gradient Boosting Regression)
用于解决回归问题。它通过迭代地训练一系列弱学习器(通常是决策树)来逐步提升模型的性能。梯度提升回归的基本思想是通过拟合前一轮模型的残差(实际值与预测值之差)来构建下一轮模型,从而逐步减小模型对训练数据的预测误差。(Gradient Boosting Regression)是一种。(树的最大深度)等。这些参数可以根据实际问题进行调整。在实际应用中,可以使用梯度提升回归的库,如。类,来实现梯度提升回归。原创 2024-01-12 10:27:00 · 2424 阅读 · 0 评论 -
监督学习 - 支持向量回归(Support Vector Regression,SVR)
在实际应用中,你可以使用机器学习库中的 SVR 实现,比如 Scikit-Learn。SVR 在解决回归问题时的主要思想是通过寻找一个决策边界,使得预测值与实际值之间的差异尽可能小,并且在一定的容忍度内。,用于解决回归问题。与传统的回归算法不同,SVR的目标是通过构建一个预测函数,使得预测值与实际值的差异最小化。在实际应用中,你可能需要根据你的数据和问题来调整这些参数。这个问题的解决方法通常使用拉格朗日乘数法和 KKT 条件。参数指定了核函数的类型(这里使用了径向基函数核,即。原创 2024-01-12 10:23:32 · 1269 阅读 · 0 评论