常见排序算法及对应的时间复杂度和空间复杂度

转载请注明出处:

http://blog.csdn.net/gane_cheng/article/details/52652705

http://www.ganecheng.tech/blog/52652705.html (浏览效果更好)

排序算法经过了很长时间的演变,产生了很多种不同的方法。对于初学者来说,对它们进行整理便于理解记忆显得很重要。每种算法都有它特定的使用场合,很难通用。因此,我们很有必要对所有常见的排序算法进行归纳。

排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。

内排序有可以分为以下几类:

  (1)、插入排序:直接插入排序、二分法插入排序、希尔排序。

  (2)、选择排序:直接选择排序、堆排序。

  (3)、交换排序:冒泡排序、快速排序。

  (4)、归并排序

  (5)、基数排序

表格版

排序方法时间复杂度(平均)时间复杂度(最坏)时间复杂度(最好)空间复杂度稳定性复杂性
直接插入排序 O(n2) O(n2) O(n) O(1) 稳定简单
希尔排序 O(nlog2n) O(n2) O(n) O(1) 不稳定较复杂
直接选择排序 O(n2) O(n2) O(n2) O(1) 不稳定简单
堆排序 O(nlog2n) O(nlog2n) O(nlog2n) O(1) 不稳定较复杂
冒泡排序 O(n2) O(n2) O(n) O(1) 稳定简单
快速排序 O(nlog2n) O(n2) O(nlog2n) O(nlog2n) 不稳定较复杂
归并排序 O(nlog2n) O(nlog2n) O(nlog2n) O(n) 稳定较复杂
基数排序 O(d(n+r)) O(d(n+r)) O(d(n+r)) O(n+r) 稳定较复杂

图片版

这里写图片描述


① 插入排序

•思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置,直到全部插入排序完为止。
•关键问题:在前面已经排好序的序列中找到合适的插入位置。
•方法:
–直接插入排序
–二分插入排序
–希尔排序

(1)直接插入排序(从后向前找到合适位置后插入)

1、基本思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置(从后向前找到合适位置后),直到全部插入排序完为止。

2、实例
这里写图片描述

3、java实现

package DirectInsertSort;

public class DirectInsertSort
{

    public static void main(String[] args)
    {
        int[] a = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 1 };
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
        // 直接插入排序
        for (int i = 1; i < a.length; i++)
        {
            // 待插入元素
            int temp = a[i];
            int j;
            for (j = i - 1; j >= 0; j--)
            {
                // 将大于temp的往后移动一位
                if (a[j] > temp)
                {
                    a[j + 1] = a[j];
                }
                else
                {
                    break;
                }
            }
            a[j + 1] = temp;
        }
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }

    }

}

(2)二分法插入排序(按二分法找到合适位置插入)

1、基本思想:二分法插入排序的思想和直接插入一样,只是找合适的插入位置的方式不同,这里是按二分法找到合适的位置,可以减少比较的次数。

2、实例

这里写图片描述

3、java实现

package BinaryInsertSort;

public class BinaryInsertSort
{

    public static void main(String[] args)
    {
        int[] a = { 49, 38, 65, 97, 176, 213, 227, 49, 78, 34, 12, 164, 11, 18, 1 };
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
        // 二分插入排序
        sort(a);
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
    }

    private static void sort(int[] a)
    {
        for (int i = 0; i < a.length; i++)
        {
            int temp = a[i];
            int left = 0;
            int right = i - 1;
            int mid = 0;
            while (left <= right)
            {
                mid = (left + right) / 2;
                if (temp < a[mid])
                {
                    right = mid - 1;
                }
                else
                {
                    left = mid + 1;
                }
            }
            for (int j = i - 1; j >= left; j--)
            {
                a[j + 1] = a[j];
            }
            if (left != i)
            {
                a[left] = temp;
            }
        }
    }

}

(3)希尔排序

1、基本思想:先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2

package ShellSort;

public class ShellSort
{

    public static void main(String[] args)
    {
        int[] a = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 1 };
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
        // 希尔排序
        int d = a.length;
        while (true)
        {
            d = d / 2;
            for (int x = 0; x < d; x++)
            {
                for (int i = x + d; i < a.length; i = i + d)
                {
                    int temp = a[i];
                    int j;
                    for (j = i - d; j >= 0 && a[j] > temp; j = j - d)
                    {
                        a[j + d] = a[j];
                    }
                    a[j + d] = temp;
                }
            }
            if (d == 1)
            {
                break;
            }
        }
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }

    }

}

② 选择排序

•思想:每趟从待排序的记录序列中选择关键字最小的记录放置到已排序表的最前位置,直到全部排完。
•关键问题:在剩余的待排序记录序列中找到最小关键码记录。
•方法:
–直接选择排序
–堆排序

(1)直接选择排序

1、基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

2、实例

这里写图片描述

3、java实现

package DirectSelectSort;

public class DirectSelectSort
{

    public static void main(String[] args)
    {
        int[] a = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 1, 8 };
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
        // 直接选择排序
        for (int i = 0; i < a.length; i++)
        {
            int min = a[i];
            int n = i; // 最小数的索引
            for (int j = i + 1; j < a.length; j++)
            {
                if (a[j] < min)
                { // 找出最小的数
                    min = a[j];
                    n = j;
                }
            }
            a[n] = a[i];
            a[i] = min;

        }
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }

    }

}

(2)堆排序

1、基本思想:

  堆排序是一种树形选择排序,是对直接选择排序的有效改进。

  堆的定义下:具有n个元素的序列 (h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,…,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。

  思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

2、实例

初始序列:46,79,56,38,40,84

建堆:

这里写图片描述

交换,从堆中踢出最大数

这里写图片描述

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

3、java实现

package HeapSort;

import java.util.Arrays;

public class HeapSort
{
    public static void main(String[] args)
    {
        int[] a = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64 };
        int arrayLength = a.length;
        // 循环建堆
        for (int i = 0; i < arrayLength - 1; i++)
        {
            // 建堆
            buildMaxHeap(a, arrayLength - 1 - i);
            // 交换堆顶和最后一个元素
            swap(a, 0, arrayLength - 1 - i);
            System.out.println(Arrays.toString(a));
        }
    }

    // 对data数组从0到lastIndex建大顶堆
    public static void buildMaxHeap(int[] data, int lastIndex)
    {
        // 从lastIndex处节点(最后一个节点)的父节点开始
        for (int i = (lastIndex - 1) / 2; i >= 0; i--)
        {
            // k保存正在判断的节点
            int k = i;
            // 如果当前k节点的子节点存在
            while (k * 2 + 1 <= lastIndex)
            {
                // k节点的左子节点的索引
                int biggerIndex = 2 * k + 1;
                // 如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
                if (biggerIndex < lastIndex)
                {
                    // 若果右子节点的值较大
                    if (data[biggerIndex] < data[biggerIndex + 1])
                    {
                        // biggerIndex总是记录较大子节点的索引
                        biggerIndex++;
                    }
                }
                // 如果k节点的值小于其较大的子节点的值
                if (data[k] < data[biggerIndex])
                {
                    // 交换他们
                    swap(data, k, biggerIndex);
                    // 将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
                    k = biggerIndex;
                }
                else
                {
                    break;
                }
            }
        }
    }

    // 交换
    private static void swap(int[] data, int i, int j)
    {
        int tmp = data[i];
        data[i] = data[j];
        data[j] = tmp;
    }
}

③ 交换排序

(1)冒泡排序

1、基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

2、实例

这里写图片描述

3、java实现

package BubbleSort;

public class BubbleSort
{
    public static void main(String[] args)
    {
        int[] a = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 1, 8 };
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
        // 冒泡排序
        for (int i = 0; i < a.length; i++)
        {
            for (int j = 0; j < a.length - i - 1; j++)
            {
                // 这里-i主要是每遍历一次都把最大的i个数沉到最底下去了,没有必要再替换了
                if (a[j] > a[j + 1])
                {
                    int temp = a[j];
                    a[j] = a[j + 1];
                    a[j + 1] = temp;
                }
            }
        }
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }

    }

}

(2)快速排序

1、基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。

2、实例

这里写图片描述

3、java实现

package QuickSort;

public class QuickSort
{
    public static void main(String[] args)
    {
        int[] a = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 1, 8 };
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
        // 快速排序
        quick(a);
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
    }

    private static void quick(int[] a)
    {
        if (a.length > 0)
        {
            quickSort(a, 0, a.length - 1);
        }
    }

    private static void quickSort(int[] a, int low, int high)
    {
        if (low < high)
        { // 如果不加这个判断递归会无法退出导致堆栈溢出异常
            int middle = getMiddle(a, low, high);
            quickSort(a, 0, middle - 1);
            quickSort(a, middle + 1, high);
        }
    }

    private static int getMiddle(int[] a, int low, int high)
    {
        int temp = a[low];// 基准元素
        while (low < high)
        {
            // 找到比基准元素小的元素位置
            while (low < high && a[high] >= temp)
            {
                high--;
            }
            a[low] = a[high];
            while (low < high && a[low] <= temp)
            {
                low++;
            }
            a[high] = a[low];
        }
        a[low] = temp;
        return low;
    }
}

④ 归并排序

1、基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

2、实例

这里写图片描述

3、java实现

package MergeSort;

import java.util.Arrays;

public class MergeSort
{
    /**
     * 归并排序 简介:将两个(或两个以上)有序表合并成一个新的有序表
     * 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列 时间复杂度为O(nlogn) 稳定排序方式
     * 
     * @param nums
     *            待排序数组
     * @return 输出有序数组
     */
    public static int[] sort(int[] nums, int low, int high)
    {
        int mid = (low + high) / 2;
        if (low < high)
        {
            // 左边
            sort(nums, low, mid);
            // 右边
            sort(nums, mid + 1, high);
            // 左右归并
            merge(nums, low, mid, high);
        }
        return nums;
    }

    public static void merge(int[] nums, int low, int mid, int high)
    {
        int[] temp = new int[high - low + 1];
        int i = low;// 左指针
        int j = mid + 1;// 右指针
        int k = 0;

        // 把较小的数先移到新数组中
        while (i <= mid && j <= high)
        {
            if (nums[i] < nums[j])
            {
                temp[k++] = nums[i++];
            }
            else
            {
                temp[k++] = nums[j++];
            }
        }

        // 把左边剩余的数移入数组
        while (i <= mid)
        {
            temp[k++] = nums[i++];
        }

        // 把右边边剩余的数移入数组
        while (j <= high)
        {
            temp[k++] = nums[j++];
        }

        // 把新数组中的数覆盖nums数组
        for (int k2 = 0; k2 < temp.length; k2++)
        {
            nums[k2 + low] = temp[k2];
        }
    }

    // 归并排序的实现
    public static void main(String[] args)
    {

        int[] nums = { 2, 7, 8, 3, 1, 6, 9, 0, 5, 4 };

        MergeSort.sort(nums, 0, nums.length - 1);
        System.out.println(Arrays.toString(nums));
    }
}

⑤ 基数排序

1、基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

2、实例

这里写图片描述

3、java实现

package BaseSort;

import java.util.*;

public class BaseSort
{

    public static void main(String[] args)
    {
        int[] a = { 49, 38, 65, 97, 176, 213, 227, 49, 78, 34, 12, 164, 11, 18, 1 };
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
        // 基数排序
        sort(a);
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++)
        {
            System.out.print(a[i] + " ");
        }
    }

    private static void sort(int[] array)
    {
        // 找到最大数,确定要排序几趟
        int max = 0;
        for (int i = 0; i < array.length; i++)
        {
            if (max < array[i])
            {
                max = array[i];
            }
        }
        // 判断位数
        int times = 0;
        while (max > 0)
        {
            max = max / 10;
            times++;
        }
        // 建立十个队列
        List<ArrayList> queue = new ArrayList<ArrayList>();
        for (int i = 0; i < 10; i++)
        {
            ArrayList queue1 = new ArrayList();
            queue.add(queue1);
        }
        // 进行times次分配和收集
        for (int i = 0; i < times; i++)
        {
            // 分配
            for (int j = 0; j < array.length; j++)
            {
                int x = array[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
                ArrayList queue2 = queue.get(x);
                queue2.add(array[j]);
                queue.set(x, queue2);
            }
            // 收集
            int count = 0;
            for (int j = 0; j < 10; j++)
            {
                while (queue.get(j).size() > 0)
                {
                    ArrayList<Integer> queue3 = queue.get(j);
                    array[count] = queue3.get(0);
                    queue3.remove(0);
                    count++;
                }
            }
        }
    }

}
阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 44
    点赞
  • 199
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 18
    评论
基础篇 1、 算法有哪些特点?它有哪些特征?它和程序的主要区别是什么? 2、 算法的时间复杂度指的是什么?如何表示? 3、 算法的空间复杂度指的是什么?如何表示? 4、 什么是最坏时间复杂性?什么是最好时间复杂性? 5、 什么是递归算法?什么是递归函数? 6、 分治法的设计思想是什么? 7、 动态规划基本步骤是什么? 8、 回溯法与分枝限界法之间的相同点是什么?不同之处在哪些方面? 9、 分枝限界法的基本思想是什么? 10、 限界函数的功能是什么? 11、 设某一函数定义如下: 编写一个递归函数计算给定x的M(x)的值。 12、 已知一个顺序表中的元素按元素值非递减有序排列,编写一个函数删除表中多余的值相同的元素。 13、 分别写出求二叉树结点总数及叶子总数的算法。 分治术 14、 有金币15枚,已知其中有一枚是假的,而且它的重量比真币轻。要求用一个天平将假的金币找出来,试设计一种算法(方案),使在最坏情况下用天平的次数最少。 15、 利用分治策略,在n个不同元素中找出第k个最小元素。 16、 设有n个运动员要进行网球循环赛。设计一个满足以下要求的比赛日程表。 (1)每个选手必须与其它n-1选手各赛一次; (2)每个选手一天只能赛一次。 17、 已知序列{503,87,512,61,908,170,897,275,652,462},写一个自底向上的归并分类算法对该序列作升序排序,写出算法中每一次归并执行的结果。 贪心法 18、 设有n个文件f1,f2,…,fn要求存放在一个磁盘上,每个文件占磁盘上1个磁道。这n个文件的检索概率分别是p1,p2,…,pn,且 =1。磁头从当前磁道移到被检索信息磁道所需的时间可用这两个磁道之间的径向距离来度量。如果文件fi存放在第i道上,1≤i≤n则检索这n个文件的期望时间是 。其中d(i,j)是第i道与第j道之间的径向距离。磁盘文件的最优存储问题要求确定这n个文件在磁盘上的存储位置,使期望检索时间达到最小。试设计一个解此问题的算法,并分析算法的正确性与计算复杂性。 19、 设有n个正整数,编写一个算法将他们连接成一排,组成一个最大的多位整数。用贪心法求解本题。 20、 键盘输入一个高精度的正整数N(此整数中没有‘0’),去掉其中任意S个数字后剩下的数字按原左右次序将组成一个新的正整数。编程对给定的N和S,寻找一种方案使得剩下的数字组成的新数最小(输出应包括所去掉的数字的位置和组成的新的正整数,N不超过240位)。 21、 对于下图给出的有向网,写出用Dijkstra方法求从顶点A到图中其它顶点的最短路径的算法,并写出执行算法过程中顶点的求解次序及从顶点A到各顶点路径的长度。 22、 对于上图给出的有向图,写出最小成本生成树,给出求解算法。 动态规划 23、 求出上图中每对结点间的最短距离的算法,并给出计算结果。 24、 下图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 25、 已知序列a1,a2,…,an,试设计一算法,从中找出一子序列 ai1 < ai2 < … E。试用动态规划的最优化原理求出A->E的最省费用。 29、 已知如下图,写出用动态规划求最短路径的递推关系式,并写出求从源点A0到终点A3 的最短路径过程。给出求解算法。 6 A1 A2 5 5 2 A0 A3 3 4 4 B1 B2 5 搜索与遍历问题 30、 已知有向图G=,试设计一算法以判断对于任意两点u和v,是否存在一条从u到v的路径,并分析其复杂度。 31、 对于给定的一个二叉树T(如下图) a) 设计一个算法,统计二叉树中结点总数; b) 设计一个算法,求二叉树最大宽度及最大宽度所在深度。 32、 判近亲问题。给定一个家族族谱,为简化问题起见,假设家族中的夫妻关系只表示男性成员。设用线性表存储家族成员,用成员的父指针指向其生父。编写一个在此种族谱表示方式下的算法,判断给定的二个家族成员是否是五代内的近亲。(提示:家族成员的表示方式应与搜索方式相适应。) 33、 完全二叉树定义为:深度为K,具有N个结点的二叉树的每个结点都与深度为K的满二叉树中编号从1至N的结点一一对应。(1)写一个建立二叉树的算法。(2)写一个判别给定的二叉树是否是完全二叉树的算法。 34、 编写计算整个二叉树高度的算法(二叉树的高度也叫二叉树的深度)。 35、 编写计算二叉树最大宽度的算法(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)。 回溯法 36、 (组合问题)求出从自然数1,2,…,n中任取r个数的所有组合。 37、 传教士与野人渡河问题。有M个传教士和M个野人准备渡河,船一次最多载2人,任何时刻野人数不能多于传教士数,但允许全部为野人。编写算法给出合理的渡河计划。 38、 某乡有n个村庄,有一个售货员,他要到各个村庄去售货,各村庄之间的路程s是已知的,且A村到B村与B村到A村的路大多不同。为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,假设商店所在的村庄为1。试设计一个算法,帮他选择一条最短的路。 39、 设某一机器由n个部件组成,每一种部件都可以从m个不同的供应商处购得。设wi,j是从供应商j处购得的部件i的重量,ci,j是相应的价格。试设计一个算法,给出总价格不超过c的最小重量机器设计。 40、 设有n件工作分配给n个人。为第i个人分配工作j所需的费用为ci,j 。试设计一个算法,计算最佳工作分配方案,为每一个人都分配1 件不同的工作,并使总费用达到最小。 41、 编写程序求解骑士巡游问题:在n行n列的棋盘上(如n=8),假设一位骑士(按象棋中“马走日”的行走法)从初始坐标位置(x1,y1)出发,要遍访(巡游)棋盘中的每一个位置一次。请编一个程序,为骑士求解巡游“路线图”(或告诉骑士,从某位置出发时,无法遍访整个棋盘 — 问题无解骑士巡游)。
1. 算法的基本概念 利用计算机算法为计算机解题的过程实际上是在实施某种算法。 (1)算法的基本特征 算法一般具有4个基本特征:可行性、确定性、有穷性、拥有足够的情报。 (2)算法的基本运算和操作 算法的基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。 (3)算法的3种基本控制结构 算法的3种基本控制结构是:顺序结构、选择结构、循环结构。 (4)算法基本设计方法 算法基本设计方法:列举法、归纳法、递推、递归、减半递推技术、回溯法。 (5)指令系统 所谓指令系统指的是一个计算机系统能执行的所有指令的集合。 (2)数据结构研究的3个方面 ① 数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构; ② 在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构; ③ 对各种数据结构进行的运算。 2. 逻辑结构 数据的逻辑结构是对数据元素之间的逻辑关系的描述,它可以用一个数据元素的集合和定义在此集合中的若干关系来表示。数据的逻辑结构有两个要素:一是数据元素的集合,通常记为D;二是D上的关系,它反映了数据元素之间的前后件关系,通常记为R。一个数据结构可以表示成:B=(D,R) 其中,B表示数据结构。为了反映D中各数据元素之间的前后件关系,一般用二元组来表示。 例如,如果把一年四季看作一个数据结构,则可表示成:B =(D,R) D ={春季,夏季,秋季,冬季} R ={(春季,夏季),(夏季,秋季),(秋季,冬季)} 3. 存储结构 数据的逻辑结构在计算机存储空间中的存放形式称为数据的存储结构(也称数据的物理结构)。 由于数据元素在计算机存储空间中的位置关系可能与逻辑关系不同,因此,为了表示存放在计算机存储空间中的各数据元素之间的逻辑关系(即前后件关系),在数据的存储结构中,不仅要存放各数据元素的信息,还需要存放各数据元素之间的前后件关系的信息。 一种数据的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序、链接等存储结构。 顺序存储方式主要用于线性的数据结构,它把逻辑上相邻的数据元素存储在物理上相邻的存储单元里,结点之间的关系由存储单元的邻接关系来体现。 链式存储结构就是在每个结点中至少包含一个指针域,用指针来体现数据元素之间逻辑上的联系。 1.2.2 线性结构和非线性结构 根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为两大类型:线性结构与非线性结构。 (1)如果一个非空的数据结构满足下列两个条件: ① 有且只有一个根结点; ② 每一个结点最多有一个前件,也最多有一个后件。 则称该数据结构为线性结构。线性结构又称线性表。在一个线性结构中插入或删除任何一个结点后还应是线性结构。栈、队列、串等都为线性结构。 如果一个数据结构不是线性结构,则称之为非线性结构。数组、广义表、树和图等数据结构都是非线性结构。 (2)线性表的顺序存储结构具有以下两个基本特点: ① 线性表中所有元素所占的存储空间是连续的; ② 线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 元素ai的存储地址为:ADR(ai)=ADR(a1)+(i-1)k,ADR(a1)为第一个元素的地址,k代表每个元素占的字节数。 (3)顺序表的运算有查找、插入、删除3种。 1.3 栈 1. 栈的基本概念 栈(stack)是一种特殊的线性表,是限定只在一端进行插入与删除的线性表。 在栈中,一端是封闭的,既不允许进行插入元素,也不允许删除元素;另一端是开口的,允许插入和删除元素。通常称插入、删除的这一端为栈顶,另一端为栈底。当表中没有元素时称为空栈。栈顶元素总是最后被插入的元素,从而也是最先被删除的元素;栈底元素总是最先被插入的元素,从而也是最后才能被删除的元素。 栈是按照“先进后出”或“后进先出”的原则组织数据的。例如,枪械的子弹匣就可以用来形象的表示栈结构。子弹匣的一端是完全封闭的,最后被压入弹匣的子弹总是最先被弹出,而最先被压入的子弹最后才能被弹出。 二级公共基础知识速学教程 2. 栈的顺序存储及其运算 栈的基本运算有3种:入栈、退栈与读栈顶元素。 ① 入栈运算:在栈顶位置插入一个新元素; ② 退栈运算:取出栈顶元素并赋给一个指定的变量; ③ 读栈顶元素:将栈顶元素赋给一个指定的变量。 1.4 队列 1. 队列的基本概念 队列是只允许在一端进行删除,在另一端进行插入的顺序表,通常将允许删除的这一端称为队头,允许插入的这一端称为队尾。当表中没有元素时称为空队列。 队列的修改是依照先进先出的原则进行的,因此队列也称为先进先出的线性表,或者后进后出的线性表。例如:火车进遂道,最先进遂道的是火车头,最后是火车尾,而火车出遂道的时候也是火车头先出,最后出的是火车尾。若有队列: Q =(q1,q2,…,qn) 那么,q1为队头元素(排头

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gane_Cheng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值