213. 打家劫舍 II

题目来源

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

解题思路

此题相对于198. 打家劫舍问题多了一个约束,就是环形数组,数组的头和尾不能同时取到。
那么最优解在三种情况中取到:

  1. 舍去数组头,保留数组尾: nums[1:]
  2. 舍去数组尾,保留数组头: nums[:-1]
  3. 同时舍去数组头和尾

因为数组为非负整数,则上述第三种情况可以不用讨论,则最优解为:
opt = max(rob(nums[1:]) , rob(nums[:-1]))

class Solution:
    def rob(self, nums: List[int]) -> int:
        def rob_func( nums):
            pre_num, cur_num = 0,0
            for num in nums:
                tmp = cur_num
                cur_num = max(pre_num+num,cur_num)
                pre_num = tmp
            return cur_num
        if len(nums) < 1:
            return 0
        return max(rob_func(nums[:-1]),rob_func(nums[1:]),nums[0])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值