题目来源
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
解题思路
此题相对于198. 打家劫舍问题多了一个约束,就是环形数组,数组的头和尾不能同时取到。
那么最优解在三种情况中取到:
- 舍去数组头,保留数组尾: nums[1:]
- 舍去数组尾,保留数组头: nums[:-1]
- 同时舍去数组头和尾
因为数组为非负整数,则上述第三种情况可以不用讨论,则最优解为:
opt = max(rob(nums[1:]) , rob(nums[:-1]))
class Solution:
def rob(self, nums: List[int]) -> int:
def rob_func( nums):
pre_num, cur_num = 0,0
for num in nums:
tmp = cur_num
cur_num = max(pre_num+num,cur_num)
pre_num = tmp
return cur_num
if len(nums) < 1:
return 0
return max(rob_func(nums[:-1]),rob_func(nums[1:]),nums[0])