线性求逆元

说在前面

在某些组合数的计数问题中,经常会用到逆元,这里我们讲一下如何线性求出1到n在模p意义下的逆元,注意p为质数。

进入正题

假设我们当前要求a在模p意义下的逆元。
p=ak+r,(0r<a) p = a k + r , ( 0 ≤ r < a ) ,那么
ak+r0(modp) a k + r ≡ 0 ( mod p ) ,然后恒等式变形,两边同时乘 a1×r1 a − 1 × r − 1
则有 a1+kr10(modp) a − 1 + k r − 1 ≡ 0 ( mod p ) ,移项
既得 a1kr1(modp) a − 1 ≡ − k r − 1 ( mod p ) ,就有
a1[pa]×(pmoda)1(modp) a − 1 ≡ − [ p a ] × ( p mod a ) − 1 ( mod p ) ,又因为我们知道与-x同余其实就是等于说与p-x同余,比如说
73532(mod5) 7 ≡ − 3 ≡ 5 − 3 ≡ 2 ( mod 5 )
代码:

var
        inv:Array[0..1000] of longint;
        i,n,p:longint;
begin
        readln(n,p);
        inv[1]:=1;
        for i:=2 to n do
        begin
                inv[i]:=inv[p mod i]*(p-p div i) mod p;
        end;
        for i:=1 to n do
                write(inv[i],' ');
end.

当然。你喜欢也可以写成这样:

var
        inv:array[0..1000] of longint;
        i,n,p:longint;
begin
        readln(n,p);
        inv[1]:=1;
        for i:=2 to n do
        begin
                inv[i]:=(-inv[p mod i]*(p div i) mod p+p) mod p;
        end;
        for i:=1 to n do
                write(inv[i],' ');
end.

接下来求(1-n)!逆元,由于过于简单,直接上代码

#include<cstdio>
#include<algorithm>
typedef long long ll;
const ll mo=1e+9+7;
const int N=2000000;
using namespace std;
ll fac[N+55],inv[N+56];
ll power(ll a,int b)
{
    ll t=1ll,y=a%mo;
    while (b)
    {
        if (b&1) t=1ll*t%mo*y%mo;
        y=1ll*y%mo*y%mo;
        b=b/2;
    }
    return t%mo;
}
int main()
{
    fac[0]=1;
    for(int i=1;i<=N;i++) fac[i]=fac[i-1]%mo*1ll*i%mo;
    inv[N]=power(fac[N],mo-2)%mo;//费马小定理暴力求
    for(int i=N-1;i>=0;i--) inv[i]=inv[i+1]%mo*(i+1)%mo;//乘上i+1那么前面的部分不就变为1了吗。
}

the end

由于我的水平有限,难免会有些写错的地方,希望大家批评指正,多多包容,thank you for your patience.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值