ZJOI2010数字计数

  • 设fi表示前i位,j数字出现了多少次(不考虑前导0的影响),不难发现它们其实是一样的。
  • f[i]=f[i-1]*10+10^(i-1)
  • 那么我们怎么求出最后的答案
  • 假设我们的数为xyz
  • 我们考虑x这位,ans[0…9]+=f[i-1]*x(注意这里的x,我们是算0000…(x-1)999),如果是算到x,就可能会算多。
  • 然后我们x出现的次数就是yz+1,然后减去前导0,对于这一位前导0就是有10^(i-1)
  • code
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for (int (i)=(a);(i)<=(b);(i)++)
using namespace std;
const int N=20;
typedef long long ll;
ll a,b,k;
ll f[N],t[N],ans[N],s[N];
void solve(ll x){
	ll b[20];
	b[0]=0;
	k=x;
	while (k){
		b[++b[0]]=k%10;
		k/=10; 
	}
	//fo(i,1,b[0]) printf("%d",b[i]);
	ll y=0;
	fo(i,1,b[0]){
		fo(j,0,9) ans[j]+=b[i]*f[i-1];
		fo(j,0,b[i]-1) ans[j]+=t[i-1];
		ans[b[i]]+=y+1;
		y=y+b[i]*t[i-1];
		ans[0]-=t[i-1];
	}
//	printf("%lld",y);
}
int main(){
//	freopen("a.in","r",stdin);
//	freopen("a.out","w",stdout);
	scanf("%lld%lld",&a,&b);
	t[0]=1;
	fo(i,1,15){
		t[i]=t[i-1]*10;
		f[i]=f[i-1]*10+t[i-1];
	}
	//solve(97845);
//	return 0;
	solve(a-1);
	fo(i,0,9) s[i]=ans[i],ans[i]=0;
	solve(b);
	fo(i,0,9) printf("%lld ",ans[i]-s[i]);
//	solve(9845);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值