- 设fi表示前i位,j数字出现了多少次(不考虑前导0的影响),不难发现它们其实是一样的。
- f[i]=f[i-1]*10+10^(i-1)
- 那么我们怎么求出最后的答案
- 假设我们的数为xyz
- 我们考虑x这位,ans[0…9]+=f[i-1]*x(注意这里的x,我们是算0000…(x-1)999),如果是算到x,就可能会算多。
- 然后我们x出现的次数就是yz+1,然后减去前导0,对于这一位前导0就是有10^(i-1)
- code
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for (int (i)=(a);(i)<=(b);(i)++)
using namespace std;
const int N=20;
typedef long long ll;
ll a,b,k;
ll f[N],t[N],ans[N],s[N];
void solve(ll x){
ll b[20];
b[0]=0;
k=x;
while (k){
b[++b[0]]=k%10;
k/=10;
}
//fo(i,1,b[0]) printf("%d",b[i]);
ll y=0;
fo(i,1,b[0]){
fo(j,0,9) ans[j]+=b[i]*f[i-1];
fo(j,0,b[i]-1) ans[j]+=t[i-1];
ans[b[i]]+=y+1;
y=y+b[i]*t[i-1];
ans[0]-=t[i-1];
}
// printf("%lld",y);
}
int main(){
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
scanf("%lld%lld",&a,&b);
t[0]=1;
fo(i,1,15){
t[i]=t[i-1]*10;
f[i]=f[i-1]*10+t[i-1];
}
//solve(97845);
// return 0;
solve(a-1);
fo(i,0,9) s[i]=ans[i],ans[i]=0;
solve(b);
fo(i,0,9) printf("%lld ",ans[i]-s[i]);
// solve(9845);
return 0;
}