基于Python的OpenCV基础入门——图像的几何变换(1)
几何变换
几何变换是指改变图像的几何结构,例如大小、角度和形状等,让图像呈现出缩放、翻转、映射和透视效果。
图像缩放
img = cv2.resize(src, dsize, fx, fy,interpolation)
src:原始图像。
dsize:输出图像的大小,格式为(宽,高),单位为像素,例如:(640, 640)。
fx:可选参数。水平方向的缩放比例。
fy:可选参数。垂直方向的缩放比例。
interpolation:可选参数。缩放的插值方式。在图像缩小或放大时需要删减或补充像素,该参数可以指定使用哪种算法对像素进行增减。
cv2.INTER_LINEAR:双线性插值(默认方法) ,cv2.INTER_AREA, cv2.INTER_NEAREST,cv2.INTER_CUBIC,
cv2.INTER_LANCZOS4
翻转变换
img = cv2.flip(src, flipCode)
src:原始图像。
flipCode:翻转类型,类型为整数
0:沿着X轴上下翻转
正数:沿着Y轴左右翻转
负数:同时沿X和Y轴对角翻转
图像缩放和翻转变换的代码实现:
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("img/cat.jpg")
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) #进行颜色转换
image_appoint_size = cv2.resize(image, (640, 640)) # 将图像resize为(640, 640)
image_proportion_size_big = cv2.resize(image, None, fx = 2, fy = 2) # 将图像宽和高均放大原来的2倍
image_proportion_size_sml = cv2.resize(image, None, fx = 1/3, fy = 1/2) # 将图像宽缩小到原来的1/3、高缩小到原来的1/2
image_list = [image, image_appoint_size, image_proportion_size_big, image_proportion_size_sml] # 创建一个图像列表
titles = ["Original", "resiz_amplify", "scale_up", "scale_down"] # 创建一个标题列表
plt.figure(figsize=(10, 8)) # 创建一个新的图形窗口,大小为10x8(单位:英寸)。
for i in range(4):
plt.subplot(2, 2, i + 1), plt.imshow(image_list[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
代码实现效果图:
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("img/cat.jpg")
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) #进行颜色转换
image_x = cv2.flip(image, 0) # 沿着X轴上下翻转
image_y = cv2.flip(image, 1) # 沿着Y轴左右翻转
image_x_y = cv2.flip(image, -1) # 对角翻转
image_list = [image, image_x, image_y, image_x_y] # 创建一个图像列表
titles = ["Original", "Flip_Up_and_Down", "Flip_Left_and_Right", "Flip_Diagonal"] # 创建一个标题列表
plt.figure(figsize=(10, 8)) # 创建一个新的图形窗口,大小为10x8(单位:英寸)。
for i in range(4):
plt.subplot(2, 2, i + 1), plt.imshow(image_list[i], 'gray')
plt.xticks([]), plt.yticks([])
plt.show()