与afreez一起学习DSP中浮点转定点运算--定点数模拟浮点数运算及常见的策略

4.定点数模拟浮点数运算及常见的策略

    相信大家到现在已经大致明白了浮点数转换成定点数运算的概貌。其实,原理讲起来很简单,真正应用到实际的项目中,可能会遇到各种各样的问题。具我的经验,常见的策略有如下几条:

--------------------------------------------------------

声明:
 
此文为原创,欢迎转载,转载请保留如下信息
 
作者:afreez 北京-中关村
 
联系方式:afreez.gan@gmail.com (欢迎与作者交流)
 
初次发布时间: 2007-02-08

初次发布在: http://blog.csdn.net/ganxingming/ 

不经本人同意,不得用语商业或赢利性质目的,否则,作者有权追究相关责任!
---------------------------------------------------------

 

1)  除法转换为乘法或移位运算

我们知道,不管硬件平台如果变换,除法运算所需要的时钟周期都远远多于乘法运算和加减移位运算,尤其是在嵌入式应用中,“效率”显得尤为重要。以笔者的经验,其实,项目中的很大一部分除法运算是可以转换成乘法和移位运算,效率还是有很大提升空间的。

 

2)  查表计算

有些运算表达式可能牵扯到很多头疼的数学公式,尤其是在嵌入式硬件平台上,出现这种公式很是头疼,因为硬件相关的软件平台提供的功能很有限,有的就没有很多“常见”的开方等数学公式。如果该类运算在项目中很少出现,而且其取值的个数也不多,那么就可以考虑对各种情况加以分析,把各种可能的结果制作成一个静态的表格(可以理解成数组),再加以简单的条件判断语句就可以解决该类问题。

 

3)  级数展开

该问题的背景同上面的问题。对于一些数学公式,如果取值范围不好处理,就可以采用级数展开的方式。

 

4)  分子分母同时变化

对于一些除法运算,为了保证精度,如果分子的扩大范围不够大的话,可以考虑缩小分母,也可以达到预期效果。具体的例子可以参考我的另一篇文章“ 解决了个困扰了2天的问题,定点运算问题 ”。 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值