APER: AdaPtive Evidence-driven Reasoning Network for machine reading comprehension with unanswerable questions
This is the paper that published in 2021 Knowledge-Based System. Impact Factor, 8.038 (2020).
动机
在解决不可回答任务上,先前的方法有两个问题:
-
First, most of them utilize a simple classifier
or a verifiable module to determine whether a question is unanswerable, which lacks the explicit process of explanation. -
Second, these methods treat the answer extraction task and the unanswerable MRC task as two
independent tasks without considering the logical consistency of their results
贡献
-
An Evidence Refining Reasoner is designed to fuse questionrelevant information globally to refine the key evidence which is a basis for determining the non-answerability.
-
A novel logical consistency training objective is introduced to keep logical consistency of the results between the answer extraction task and the unanswerable MRC task.
-
Experimental results and ablation study on two datasets show that the APER has strong competitiveness and improves the Recall of unanswerable questions significantly.
做法

- Global Encoder
- 利用PLMs和task-specific global encoder 对上下文进行编码,获取 task-specific global semantic information
- Evidence Refining Reasoner (the interaction between the passage and question is sometimes performs multiple times during the rereading process of human comprehension)
- Evidence Refining Reasoner contains a stack of reasoning and fusion blocks, each of which contains a start and an end sub-block. See the figure below.
- Finally, Evidence Refining Reasoner refines the key evidence information for subsequent prediction.

-
Answer Consistency Detector
- outputs an unanswerable score based on the refined evidences (clues)
- compute a consistency training loss to keep logical consistency between the answer extraction task and the unanswerable MRC task.
-
Training process

-
Dataset processing

实验
-
Dureader and Squad 2.0

-
Precision §, Recall ® and F1 of unanswerable questions

-
ablation study

-
Case study

-
Different question types

- Steps of the reasoning


APER是2021年发表在《知识为基础的系统》上的一篇论文,提出了针对不可回答问题的机器阅读理解新方法。该方法通过设计证据精炼推理器,全球性融合问题相关信息,精细化关键证据,以判断问题是否无法回答。同时,引入了逻辑一致性训练目标,保持答案提取任务和不可回答MRC任务之间的逻辑一致。实验显示,APER在两个数据集上的未回答问题召回率有显著提升,并且在不同问题类型上表现出强竞争力。

被折叠的 条评论
为什么被折叠?



