知之可否

Be yourself; everyone else is already taken.​

lintcode:Find Peak Element

There is an integer array which has the following features:

  • The numbers in adjacent positions are different.
  • A[0] < A[1] && A[A.length - 2] > A[A.length - 1].

We define a position P is a peek if:

A[P] > A[P-1] && A[P] > A[P+1]

Find a peak element in this array. Return the index of the peak.

Example
Given [1, 2, 1, 3, 4, 5, 7, 6]

Return index 1 (which is number 2) or 6 (which is number 7)

Note
The array may contains multiple peeks, find any of them.

Challenge
Time complexity O(logN)

由时间复杂度的暗示可知应使用二分搜索。首先分析若使用传统的二分搜索,若A[mid] > A[mid - 1] && A[mid] < A[mid + 1],则找到一个peak为A[mid];若A[mid - 1] > A[mid],则A[mid]左侧必定存在一个peak,可用反证法证明:若左侧不存在peak,则A[mid]左侧元素必满足A[0] > A[1] > … > A[mid -1] > A[mid],与已知A[0] < A[1]矛盾,证毕。同理可得若A[mid + 1] > A[mid],则A[mid]右侧必定存在一个peak。如此迭代即可得解。

备注:如果本题是找 first/last peak,就不能用二分法了

class Solution {
public:
    /**
     * @param A: An integers array.
     * @return: return any of peek positions.
     */
    int findPeak(vector<int> A) {
        // write your code here
        int l=0,r=A.size()-1;
        //l,r-1,r是循环的最小情况
        while(l<r-1){
            int mid=l+(r-l)/2;
            if(A[mid]>A[mid-1]&&A[mid]>A[mid+1]){
                return mid;
            }else if(A[mid]<A[mid-1]){
                r=mid;
            }else if(A[mid]<A[mid+1]){
                l=mid;
            }
        }
    }
};

参考http://www.code123.cc/docs/leetcode-notes/binary_search/find_peak_element.html

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/gao1440156051/article/details/49907215
个人分类: lintcode
相关热词: lintcode
上一篇lintcode:Find Minimum in Rotated Sorted Array
下一篇哈夫曼树
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭