Q-learning算法实践

本文介绍如何应用Q-learning算法解决经典Markov决策问题——走迷宫。项目涉及强化学习基础,Q值计算,epsilon-greedy策略以及代码实现。通过训练,机器人学习避开陷阱,找到迷宫出口。文章还提供了训练过程的可视化和相关参数调整。
摘要由CSDN通过智能技术生成

我们将会应用 Q-learning 算法完成一个经典的 Markov 决策问题 -- 走迷宫!

项目描述:

1.png

在该项目中,你将使用强化学习算法,实现一个自动走迷宫机器人。

  1. 如上图所示,智能机器人显示在右上角。在我们的迷宫中,有陷阱(红色炸弹)及终点(蓝色的目标点)两种情景。机器人要尽量避开陷阱、尽快到达目的地。

  2. 小车可执行的动作包括:向上走 u、向右走 r、向下走 d、向左走 l。

  3. 执行不同的动作后,根据不同的情况会获得不同的奖励,具体而言,有以下几种情况。

    • 撞到墙壁:-10

    • 走到终点:50

    • 走到陷阱:-30

    • 其余情况:-0.1

  4. 我们需要通过修改 robot.py 中的代码,来实现一个 Q Learning 机器人,实现上述的目标。

Section 1 算法理解

1. 1 强化学习总览

强化学习作为机器学习算法的一种,其模式也是让智能体在“训练”中学到“经验”,以实现给定的任务。但不同于监督学习与非监督学习,在强化学习的框架中,我们更侧重通过智能体与环境的交互来学习。通常在监督学习和非监督学习任务中,智能体往往需要通过给定的训练集,辅之以既定的训练目标(如最小化损失函数),通过给定的学习算法来实现这一目标。然而在强化学习中,智能体则是通过其与环境交互得到的奖励进行学习。这个环境可以是虚拟的(如虚拟的迷宫),也可以是真实的(自动驾驶汽车在真实道路上收集数据)。

在强化学习中有五个核心组成部分,它们分别是:环境Environment、智能体Agent、状态State)、动作Action和奖励Reward。在某一时间节点t:

  • 智能体在从环境中感知其所处的状态 1.png

  • 智能体根据某些准则选择动作 2.png

  • 环境根据智能体选择的动作,向智能体反馈奖励 3.png

通过合理的学习算法,智能体将在这样的问题设置下,成功学到一个在状态 4.png选择动作 5.png的策略 6.png

 

1.2 计算Q值

在我们的项目中,我们要实现基于 Q-Learning 的强化学习算法。Q-Learning 是一个值迭代(Value Iteration)算法。与策略迭代(Policy Iteration)算法不同,值迭代算法会计算每个”状态“或是”状态-动作“的值(Value)或是效用(Utility),然后在执行动作的时候,会设法最大化这个值。因此,对每个状态值的准确估计,是我们值迭代算法的核心。通常我们会考虑最大化动作的长期奖励,即不仅考虑当前动作带来的奖励,还会考虑动作长远的奖励。

在 Q-Learning 算法中,我们把这个长期奖励记为 Q 值,我们会考虑每个 ”状态-动作“ 的 Q 值,具体而言,它的计算公式为:

7.png

也就是对于当前的“状态-动作” 8.png,我们考虑执行动作9.png后环境给我们的奖励 

  • 6
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值