动态规划之换零钱

问题描述:如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元?
有人会说这太简单,对是太简单,但请你用动态规划解,将问题进行抽象,最后达到什么程度了,给出任意面值集合V,凑够的面值为m,求所需硬币最少的个数 j.
这是动态规划的入门题。
首先先介绍一下什么是动态规划:
动态规划算法通常基于一个递推公式及一个或多个初始状态。 当前子问题的解将由上一次子问题的解推出。使用动态规划来解题只需要多项式时间复杂度, 因此它比回溯法、暴力法等要快许多。
现在对上面的问题进行分析:
首先我们思考一个问题,如何用最少的硬币凑够m元为什么要这么问呢? 两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的, 本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。
好了,让我们从最小的m开始吧。当m=0,即我们需要多少个硬币来凑够0元。 由于1,3,5都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个硬币。 这时候我们发现用一个标记来表示这句“凑够0元我们最少需要0个硬币。”会比较方便, 如果一直用纯文字来表述,不出一会儿你就会觉得很绕了。那么, 我们用d(m)=j来表示凑够m元最少需要j个硬币。于是我们已经得到了d(0)=0, (注意d(0)=0可以做为动态规划的初始状态),表示凑够0元最小需要0个硬币。当m=1时,只有面值为1元的硬币可用, 因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道答案的, 即d(0)=0。所以,d(1)=d(1-1)+1=d(0)+1=0+1=1。当m=2时, 仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币, 接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。 所以d(2)=d(2-1)+1=d(1)+1=1+1=2。一直到这里,你都可能会觉得,好无聊, 感觉像做小学生的题目似的。因为我们一直都只能操作面值为1的硬币!耐心点, 让我们看看m=3时的情况。当m=3时,我们能用的硬币就有两种了:1元的和3元的( 5元的仍然没用,因为你需要凑的数目是3元!5元太多了亲)。 既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了: 凑够3-1=2元需要的最少硬币数量。即d(3)=d(3-1)+1=d(2)+1=2+1=3。 这个方案说的是,我拿3个1元的硬币;第二种方案是我拿起一个3元的硬币, 我的目标就变成:凑够3-3=0元需要的最少硬币数量。即d(3)=d(3-3)+1=d(0)+1=0+1=1. 这个方案说的是,我拿1个3元的硬币。好了,这两种方案哪种更优呢? 记得我们可是要用最少的硬币数量来凑够3元的。所以, 选择d(3)=1,怎么来的呢?具体是这样得到的:d(3)=min{d(3-1)+1, d(3-3)+1}。min{ }为取集合中的最小值,上面的min{d(3-1)+1,d(3-3)+1} 取最小值为d(3-3)+1。简单的过程分析后,让我们来点抽象的。从以上的文字中, 我们要抽出动态规划里非常重要的两个概念:状态和状态转移方程。
据上文我们可以抽象的d(i) (0<=i<=m)表示凑够i元需要的最少硬币数量,我们将它定义为该问题的”状态”, 这个状态是怎么找出来的呢? 它根据子问题定义状态。你找到子问题,状态也就浮出水面了。比如d(11),d(0),d(1)等等这些都是状态 ,这些状态的值我们都要进行保存,以便下一步子问题查阅上一步子问题的解,我们最终的状态是解决问题,所以终态为d(11),即凑够11元最少需要多少个硬币。 那状态转移方程是什么呢?既然我们用d(i)表示状态,那么状态转移方程自然包含d(i), 上文中包含状态d(i)的方程是:d(3)=min{d(3-1)+1, d(3-3)+1}。没错, 它就是状态转移方程,描述状态之间是如何转移的。当然,我们要对它抽象一下,
d(i)=min{ d(i-vj)+1 },其中i-vj >=0,vj表示集合V中第j个硬币的面值,那min{} 是怎么操作的了以上面的为例,m=11, v={1,3,5}
d(11)=min{d(11-1)+1,d(11-3)+1,d(11-5)+1}=min{d(10)+1,d(8)+1,d(6)+1};找出里面的最小值,d(10)+1,d(8)+1,d(6)+1,从中可以看出,我们是从底向上解题,也就是说从d(0)开始一直到d(11)。我们将所解的每个状态的值都保存到一个集合中。按这个原则,我们可以得到d(11) ,它所依赖的d(10),d(8),d(9)我们都可以从状态集合中获取。这样我就可以只关心当前状态的求解。而不用关心它之前的状态,因为它之前的状态都是已知的。
有了状态和状态转移方程,这个问题基本上也就解决了。
下面我们来看一下代码要怎么实现的:

public class MinCoin{
      public static int dp(int[]V,int m){
          //用于保存状态
          int[] minSV=new int[m+1];
          //初始状态 将d(0)保存到状态集合中
          minSV[0]=0;
          //保证minSV[i]即d(i)只被初始化一次
          boolean flog=true;
          //获取d(1)到的(m)所有的状态值,将其保存到状态集合中
             for(int i=1;i<=m;i++){
                  flog=true;
              for(int j=0;j<V.length;j++){
                  //d(i)=min{d(i-vj)+1}
                  //先假设d(i)为要比较集合min{..}内的第一个。即将d(i)初始化为min{。。}内的第一个。
                 if(V[j]<=i && flog){
                    minSV[i]=minSV[i-V[j]]+1;
                    //保证只初始化一次
                    flog=false;
                 }
                 //获取集合内最小的一个赋值给d(i) 即d(i)=min{d(i-vj)+1}
                 //所用选取的面值vj不能大于要凑够的面值i,且的d(i-vj)是min{..}内最小的
                 if(V[j]<=i && minSV[i-V[j]]+1<minSV[i]){
                     minSV[i]=minSV[i-V[j]]+1;
                 }
              }
          }
          //返回终态d(m)的值
          return minSV[m];
      }
      public static void main(String[] args) {
             //要凑够的面值为11
                int m=11;
              //可用的面值集合为V
               int[] V=new int[]{1,3,5};
             System.out.println("最少需要:"+dp(V,m)+"枚硬币");



    }
}
  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值