蛇形三角填数

该博客主要介绍了一种三角形的蛇形填数问题,涉及ACM竞赛中的算法。博主详细分析了如何找出图形特点和循环变量的关系,特别是在确定蛇形路径时的动态关系。在解决过程中,博主强调了预判判断边界的重要性,以确保填充元素正确地按照右下左上的规则进行,避免越界。文中还包含了解决问题的代码片段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

跟蛇形填数一样,只是填数要求按照三角形填。注意每组数据之间用空行隔开

输入

第一行有一个N,表示N组测试数据
接下来每组数据包括一个数字X,表示三角形的边长,0< X <1000

输出

输出之后填好之后的图
蛇形填数输出

解题思路

首先找出图形的特点(对称性等)与循环变量(行号,列号)之间的关系. 我们可以假设行用i表示,列用j表示.我们的目的就是找出i,j与图形之间的对应关系.按图形形状的不同,复杂性不同.但是都可以看做是在寻找一种或多种”静态关系”. 蛇形填数这种题目的思路就是找出题目中对图形的限制条件(不能出界,按照一定规则填充等).我们用各种循环和If语句将这些”规则”变成程序语句.同样,根据”规则”不同,复杂性也不同.但是都可以看做是在寻找一种或多种”动态关系”.明确了解题思想不同后,因此我们要寻找的就是”动态关系”.这里的动态关系就是”蛇形”.通过观察,我们可以看出规则:在规定的方阵n*n里.在不越界及不走重复位置的前提下,填充元素遵循右下左上的规定.即向右走到顶后向下走到顶,再向左走到顶,向上走到顶. 现在我们就将规则变成程序语句.首先是怎么样判断不越界.由于方阵是n*n的方阵,我们使用二维数组最大元素是a[n-1][n-1].那判断是否行越界是不是就用语句if(y <= n-1)就行了呢? 思路上是没错,不过具体实现时会遇到麻烦,因为当y <= n-1的时候是要不停地进行y++向右填充的.那么到y = n-1的时候仍会向右走一格,y = n时才会停下来.显然这不是正确的状态.还要处理回退.因此这种判断方法是不完善的.在这里我们就要提到在很多时候都要用到的判断方法”预判”.即提前一格判断下一格是否越界,如果下一格越界就不再移动.这样就能很好控制填充的走向.即y+1 < n.在很多情况下,都需要这种预判,不仅对程序的安全性是一种保障,而且避免了一定要走错才能判断出错误这种尴尬情形.只不过要稍微注意下由于是预判,后面的变量要记得+1.

代码段

代码段1
代码段2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值