三国志

描述

《三国志》是一款很经典的经营策略类游戏。我们的小白同学是这款游戏的忠实玩家。现在他把游戏简化一下,地图上只有他一方势力,现在他只有一个城池,而他周边有一些无人占的空城,但是这些空城中有很多不同数量的同种财宝。我们的小白同学虎视眈眈的看着这些城池中的财宝。

按照游戏的规则,他只要指派一名武将攻占这座城池,里面的财宝就归他所有了。不过一量攻占这座城池,我们的武将就要留守,不能撤回。因为我们的小白手下有无数的武将,所以他不在乎这些。

从小白的城池派出的武将,每走一公理的距离就要消耗一石的粮食,而他手上的粮食是有限的。现在小白统计出了地图上城池间的道路,这些道路都是双向的,他想请你帮忙计算出他能得到 的最多的财宝数量。我们用城池的编号代表城池,规定小白所在的城池为0号城池,其他的城池从1号开始计数。

输入

本题包含多组数据:
首先,是一个整数T(1<=T<=20),代表数据的组数
然后,下面是T组测试数据。对于每组数据包含三行:
第一行:三个数字S,N,M
(1<=S<=1000000,1<=N<=100,1<=M<=10000)
S代表他手中的粮食(石),N代表城池个数,M代表道路条数。
第二行:包含M个三元组行 Ai,Bi,Ci(1<=A,B<=N,1<=C<=100)。
代表Ai,Bi两城池间的道路长度为Ci(公里)。
第三行:包含N个元素,Vi代表第i个城池中的财宝数量。(1<=V<=100)

输出

每组输出各占一行,输出仅一个整数,表示小白能得到的最大财富值。

样例输入

2
10 1 1
0 1 3
2
5 2 3
0 1 2 0 2 4 1 2 1
2 3

样例输出

2
5

代码

#include<stdio.h>
#include<string.h>
#include<queue>
#include<iostream>
#include<algorithm>
using namespace std;
//SPFA+01背包
const int maxn=10005;
const int INF=0x3f3f3f3f;
int DP[1000005];
struct node
{
    int v;
    int w;
    node *next;
}*List[maxn];
int Value[maxn];//价值
int dis[maxn];//代价
int vis[maxn];
int N;
int M;//注意都是双向边
int S;//粮食
void Add_Edge(int u,int v,int w)
{
   node *temp=new node;
   temp->v=v;
   temp->w=w;
   if(List[u]==NULL)
   {
       List[u]=temp;
       temp->next=NULL;
   }
   else
   {
       temp->next=List[u];
       List[u]=temp;
   }
}
void Init_List()
{
   for(int i=0;i<=N;i++)
   {
       for(node *temp=List[i];temp!=NULL;temp=List[i])
       {
           List[i]=temp->next;
           delete temp;
       }
   }
}
void SPFA()
{
   memset(vis,0,sizeof(vis));
   memset(dis,0x3f,sizeof(dis));
   dis[0]=0;
   vis[0]=1;
   queue<int>q;
   q.push(0);
   while(!q.empty())
   {
       int u=q.front();
       q.pop();
       for(node *temp=List[u];temp!=NULL;temp=temp->next)
       {
           if(dis[temp->v]>dis[u]+temp->w)
           {
               dis[temp->v]=dis[u]+temp->w;
               if(vis[temp->v]==0)
               {
                   q.push(temp->v);
                   vis[temp->v]=1;
               }
           }
       }
   }
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&S,&N,&M);
        for(int i=0; i<M; i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            Add_Edge(u,v,w);
            Add_Edge(v,u,w);
        }
        for(int i=1; i<=N; i++)
            scanf("%d",&Value[i]);
        SPFA();
        memset(DP,0,sizeof(DP));
        for(int i=1; i<=N; i++)//这里01背包空间复杂度待优化
            for(int j=S; j>=dis[i]; j--)
                DP[j]=max(DP[j],DP[j-dis[i]]+Value[i]);
        printf("%d\n",DP[S]);
        Init_List();
    }
    return 0;
}

测试截图

这里写图片描述

AC截图

这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值