行列式点过程(一)

行列式点过程DPP是离散有限点集 Y = { 1 , 2 , . . . N } \mathcal{Y}=\{1,2,...N\} Y={1,2,...N}的幂集 2 Y 2^{\mathcal{Y}} 2Y上的概率分布。

体积与格拉姆矩阵

L i j = g ⃗ ( i ) g ⃗ ( j ) , i , j ∈ Y L_{ij}=\vec{g}(i)\vec{g}(j), i,j\in Y Lij=g (i)g (j),i,jY

d e t ( L Y ) = d e t ( g ⃗ ( i ) g ⃗ ( j ) : i , j ∈ Y ) det(L_Y) = det(\vec{g}(i)\vec{g}(j):i,j\in Y) det(LY)=det(g (i)g (j):i,jY)

左侧行列式的值可以理解为向量 g ⃗ ( i ) : i ∈ Y \vec{g}(i):i\in Y g (i):iY 构成的平行六面体的体积。

符号 e ⃗ i \vec{e}_i e i表示第i维度的单位向量,例如 e ⃗ 2 = ( 0 , 1 , 0 , 0 , 0 ) \vec{e}_2=(0,1,0,0,0) e 2=(0,1,0,0,0),假设 1 ∈ Y 1\in Y 1Y了,则有:

V o l ( g ⃗ ( i ) : i ∈ Y ) = ∣ ∣ g ⃗ ( 1 ) ∣ ∣ 2 V o l ( P r o j ⊥ g ⃗ ( i ) e ⃗ 1 : i ∈ Y − { 1 } ) Vol(\vec{g}(i):i \in Y)=||\vec{g}(1)||_2Vol(Proj_{\perp \vec{g}(i)\vec{e}_1}:i\in Y -\{1\}) Vol(g (i):iY)=g (1)2Vol(Projg (i)e 1:iY{1})

以上公式等价于通过舒尔补方式计算行列式。

边际核

Y Y Y是根据根据DPP概率分布从 2 Y 2^{\mathcal{Y}} 2Y中采样得到的一个子集,则:

p ( Y = A ∣ L ) = d e t ( L A ) d e t ( L + I ) p(Y=A|L) = \frac{det(L_A)}{det(L+I)} p(Y=AL)=det(L+I)det(LA)

p ( Y ⊇ A ∣ K ) = d e t ( K A ) p(Y\supseteq A|K) = det(K_A) p(YAK)=det(KA)

p ( Y ⊇ A ∣ K ) = ∑ B ⊇ A P ( Y = B ∣ L ) p(Y\supe A |K) = \sum_{B\supe A} P(Y=B|L) p(YAK)=BAP(Y=BL)

给定L-ensemble核L,推导出对应的边际核K。

推导过程:

p ( Y ⊇ A ∣ L ) = ∑ B ⊇ A p ( Y = B ∣ L ) p(Y\supe A|L) = \sum_{B\supe A}p(Y=B|L) p(YAL)=BAp(Y=BL)

= ∑ B ⊇ A d e t ( L B ) d e t ( L + I ) =\sum_{B\supe A}\frac{det(L_B)}{det(L+I)} =BAdet(L+I)det(LB)

= d e t ( L + I A ‾ ) d e t ( L + I ) =\frac{det(L+I_{\overline{A}})}{det(L+I)} =det(L+I)det(L+IA)

= d e t ( ( L + I A ‾ ) ( L + I ) − 1 ) =det((L+I_{\overline{A}})(L+I)^{-1}) =det((L+IA)(L+I)1)

= d e t ( I A ‾ ( L + I ) − 1 + L ( L + I ) − 1 ) =det(I_{\overline{A}}(L+I)^{-1} + L(L+I)^{-1}) =det(IA(L+I)1+L(L+I)1)

= d e t ( I A ‾ ( L + I ) − 1 + I − ( L + I ) − 1 ) =det(I_{\overline{A}}(L+I)^{-1} + I - (L+I)^{-1}) =det(IA(L+I)1+I(L+I)1)

= d e t ( I A ‾ + I A ( I − ( L + I ) − 1 ) ) =det(I_{\overline{A}} + I_{A}(I-(L+I)^{-1})) =det(IA+IA(I(L+I)1))

= d e t ( I A ‾ + ( I − ( L + I ) − 1 ) A ) =det(I_{\overline{A}} + (I-(L+I)^{-1})_A) =det(IA+(I(L+I)1)A)

= d e t ( ( I − ( L + I ) − 1 ) A ) =det((I-(L+I)^{-1})_A) =det((I(L+I)1)A)

得出:

K = I − ( L + I ) − 1 K=I - (L+I)^{-1} K=I(L+I)1

p ( Y ⊇ A ∣ L ) = d e t ( K ) p(Y\supe A|L) = det(K) p(YAL)=det(K)

四类表示方法
  • L-ensemble核 L:半正定方阵
  • 边际核K:半正定方阵,所有特征值 ≤ 1 \le 1 1
  • 格拉姆矩阵: L = B B T L=BB^T L=BBT B B B N × D N\times D N×D矩阵,D为特征维度;对偶形式 C = B T B ∈ R D × D C = B^TB \in R^{D\times D} C=BTBRD×D
  • 质量多样性分解: B = Q ϕ B = Q\phi B=Qϕ Q Q Q为对角矩阵, ϕ \phi ϕ的行向量为单位向量
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值