0103函数-映射与函数-函数与极限

1、函数的概念

  • 定义:设数集 D ⊂ R D\subset R DR,则称映射 f : D → R f:D\rightarrow R f:DR 为定义在D上的函数,通常记为

y = f ( x ) , x ∈ D y=f(x),x\in D y=f(x),xD

  • 名词解析:
  1. x称为自变量,y称为因变量,D为定义域。

  2. 函数值:y称为f在x处的函数值,记做 f ( x ) f(x) f(x),即 y = f ( x ) y=f(x) y=f(x)

  3. 函数关系:因变量y与自变量x之间的依赖关系,称为函数关系

  4. 值域:函数值 f ( x ) f(x) f(x)的全体构成的集合称为函数f的值域,记做 R f R_f Rf f ( D ) f(D) f(D),即
    R f = f ( D ) = { y ∣ y = f ( x ) , x ∈ D } R_f=f(D)=\{y|y=f(x),x\in D\} Rf=f(D)={yy=f(x),xD}

  • 辨析-f和 f ( x ) f(x) f(x)的区别:
  1. f表示自变量x与因变量y之间的对应法则
  2. f ( x ) f(x) f(x)表示与自变量x对应的函数值
  • 函数相等判定:

    1. 定义域相同
    2. 对应法则相同
  • 定义域确定:

    1. 有实际背景的函数:根据实际背景中变量的实际意义确定
    2. 抽象的用算式表达的函数:通常约定使算式有意义的一切实数的集合,这种定义域也称为自然定义域。
  • 函数的表示方法:

    1. 表格法
    2. 图形法
    3. 解析法
  • 常见函数示例:

    1. 绝对值函数
      y = ∣ x ∣ = { x , x >= 0, − x , x < 0 y= \lvert x\rvert= \begin{cases} x, &\text{x >= 0,}\\[2ex] -x,&\text{x < 0} \end{cases} y=x=x,x,x >= 0,x < 0
      定义域 D = ( − ∞ , + ∞ ) D=(-\infty,+\infty) D=(,+),值域 R f = [ 0 , + ∞ ) R_f=[0,+\infty) Rf=[0,+),该函数称为绝对值函数,图示:在这里插入图片描述

    2. 取整函数
      y = [ x ] y=[x] y=[x]
      定义域 D = ( − ∞ , + ∞ ) D=(-\infty,+\infty) D=(,+),值域 R f = Z R_f=Z Rf=Z,图示:在这里插入图片描述

    3. 分段函数
      y = { 2 x , 0 ≤ x ≤ 1 , 1 + x , x > 1 y = \begin{cases} 2\sqrt{x}, &0\le x\le 1,\\[2em] 1+x, &x\gt 1 \end{cases} y=2x ,1+x,0x1,x>1
      定义域 D = [ 0 , + ∞ ) D=[0,+\infty) D=[0,+),图示:

2、函数的特性

2.1、函数的有界性

设函数 f ( x ) f(x) f(x)的定义域D,数集 X ⊂ D X\sub D XD。如果存在数 K 1 K_1 K1,使得
f ( x ) ≤ K 1 f(x)\le K_1 f(x)K1
对任一 x ∈ X x\in X xX都成立,则称函数 f ( x ) f(x) f(x)在X上有上界,而 K 1 K_1 K1称为函数 f ( x ) f(x) f(x)在X上的一个上界。如果存在数 K 2 K_2 K2,使得
f ( x ) ≥ K 2 f(x)\ge K_2 f(x)K2
对任一 x ∈ X x\in X xX都成立,则称函数 f ( x ) f(x) f(x)在X上有下界,而 K 2 K_2 K2称为函数 f ( x ) f(x) f(x)在X上的一个下界。如果存在正数M,使得
∣ f ( x ) ∣ ≤ M \lvert f(x)\rvert\le M f(x)M
对任一 x ∈ X x\in X xX都成立,则称函数 f ( x ) f(x) f(x)在X上有界。如果这样的M不存在,就称函数 f ( x ) f(x) f(x)在X上无界。即对应任何正数M,总存在 x 1 ∈ X x_1\in X x1X,使得 ∣ f ( x 1 ) ∣ > M \lvert f(x_1)\rvert\gt M f(x1)>M,那么函数 f ( x ) f(x) f(x)在X上无界。

函数 f ( x ) f(x) f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。

2.2、函数的单调性

设函数 f ( x ) f(x) f(x)的定义域D,区间 I ⊂ D I\sub D ID。如果对于区间 I I I上的任意两点 x 1 , x 2 x_1,x_2 x1,x2,当 x 1 < x 2 x_1\lt x_2 x1<x2时,恒有
f ( x 1 ) < f ( x 2 ) f(x_1)\lt f(x_2) f(x1)<f(x2)
则称函数 f ( x ) f(x) f(x)在区间 I I I上是单调递增(增加)的;如果对于区间 I I I上的任意两点 x 1 , x 2 x_1,x_2 x1,x2,当 x 1 < x 2 x_1<x_2 x1<x2时,恒有
f ( x 1 ) > f ( x 2 ) f(x_1)\gt f(x_2) f(x1)>f(x2)
则称函数 f ( x ) f(x) f(x)在区间 I I I上是单调递减(减少)的。单调增加和单调减少统称为单调函数。

  • 示例1 f ( x ) = x 2 f(x)=x^2 f(x)=x2在区间 ( − ∞ , 0 ] (-\infty,0] (,0]上的单调递减的,在区间 [ 0 , + ∞ ) [0,+\infty) [0,+)上的单调递增的;在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上不是单调的。图示:

2.3、函数的奇偶性

设函数 f ( x ) f(x) f(x)的定义域D关于原点对称,如果对于任一的 x ∈ D x\in D xD
f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)
恒成立,则称 f ( x ) f(x) f(x)为偶函数。如果对于任一的 x ∈ D x\in D xD
f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)
恒成立,则称 f ( x ) f(x) f(x)为奇函数。

偶函数的图像关于y轴对称;奇函数的图像关于原点对称。

2.4、函数的周期性

设函数 f ( x ) f(x) f(x)的定义域为D。如果存在一个整数 l l l,使得对于任一 x ∈ D x\in D xD ( x + − l ) ∈ D (x+-l)\in D (x+l)D,使得
f ( x + l ) = f ( x ) f(x+l) = f(x) f(x+l)=f(x)
恒成立,则称函数 f ( x ) f(x) f(x)为周期函数, l l l为函数 f ( x ) f(x) f(x)的周期,通常我们说的周期函数的周期为最小正周期。

并非每个周期函数都有最小正周期,比如狄利克雷函数
D ( x ) = { 1 , x ∈ Q , 0 , x ∈ Q c D(x)= \begin{cases} 1, & x\in Q,\\[2em] 0, & x\in Q^c \end{cases} D(x)=1,0,xQ,xQc
任何正有理数都是它的周期,因为不存在最小的正有理数,说以它没有做小最小正周期。

3、反函数和复合函数

3.1、反函数

设函数 f : D → f ( D ) f:D\rightarrow f(D) f:Df(D)是单射,则它存在逆映射 f − 1 : f ( D ) → D f^-1:f(D)\rightarrow D f1:f(D)D,称此映射 f − 1 f^-1 f1为函数 f f f的反函数。

一般的, y = f ( x ) , x ∈ D y=f(x),x\in D y=f(x),xD的反函数记做 y = f − 1 ( x ) , x ∈ f ( D ) y=f^-1(x),x\in f(D) y=f1(x),xf(D)

结论:

  1. f f f的定义在D上的单调函数,则 f : D → f ( D ) f:D\rightarrow f(D) f:Df(D)是单射, f f f的反函数 f − 1 f^-1 f1必定存在且也是 f ( D ) f(D) f(D)上的单调函数,且单调性一致。
  2. 函数 y = f ( x ) y=f(x) y=f(x)和它的反函数 y = f − 1 ( x ) y=f^-1(x) y=f1(x)关于直线 y = x y=x y=x对称。

3.2、复合函数

复合函数是复合映射的一种特例,按照通常函数的记号,复合函数的概念可如下表述。

设函数 y = f ( u ) y=f(u) y=f(u)的定义域为 D f D_f Df,函数 u = g ( x ) u=g(x) u=g(x)的定义域为 D g D_g Dg,且其值域 R g ⊂ D f R_g\sub D_f RgDf,则由下式确定的函数
y = f [ g ( x ) ] , x ∈ D g y=f[g(x)],x\in D_g y=f[g(x)]xDg
称为由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)构成的复合函数,它的定义域为 D g D_g Dg,变量 u u u称为中间变量。

函数 g g g与函数 f f f构成的复合函数,即按“先g后f”的次序复合的函数,通常记为 f ∘ g f\circ g fg,即
( f ∘ g ) ( x ) = f [ g ( x ) ] (f\circ g)(x) = f[g(x)] (fg)(x)=f[g(x)]

  • g与f构成复合函数 f ∘ g f\circ g fg的条件:函数g的值域 R g R_g Rg必须包含在函数f的定义域 D f D_f Df内,即 R g ⊂ D f R_g\sub D_f RgDf

4、函数的运算

设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的定义域依次为 D 1 , D 2 , D = D 1 ∩ D 2 ≠ ∅ D_1,D_2,D=D_1\cap D_2\ne \emptyset D1,D2,D=D1D2=,则我们可以定义这两个函数的下列运算:

  • 和(差) f + − g f+-g f+g ( f + − g ) ( x ) = f ( x ) + − g ( x ) , x ∈ D (f+-g)(x)=f(x)+-g(x),x\in D (f+g)(x)=f(x)+g(x),xD
  • f ∗ g f*g fg ( f ∗ g ) ( x ) = f ( x ) ∗ g ( x ) , x ∈ D (f*g)(x)=f(x)*g(x),x\in D (fg)(x)=f(x)g(x),xD
  • f g \frac fg gf ( f g ) ( x ) = f ( x ) g ( x ) , x ∈ D   x ∣ g ( x ) = 0 , x ∈ D (\frac fg)(x)=\frac {f(x)}{g(x)},x\in D\ {x\vert g(x)=0,x\in D} (gf)(x)=g(x)f(x),xD xg(x)=0,xD

设函数 f ( x ) f(x) f(x)的定义域为 ( − l , l ) (-l,l) (l,l),则比存在 ( − l , l ) (-l,l) (l,l)上的偶函数 g ( x ) g(x) g(x)及奇函数 h ( x ) h(x) h(x),使得
f ( x ) = g ( x ) + h ( x ) f(x)=g(x)+h(x) f(x)=g(x)+h(x)

5、初等函数

初等数学中几类函数:

  • 幂函数: y = x n ( n ∈ R 是 常 数 ) y=x^n(n\in R 是常数) y=xn(nR)
  • 指数函数: y = x a ( a > 0 且 a ≠ 1 ) y=x^a(a\gt 0且a\ne 1) y=xa(a>0a=1)
  • 对数函数: y = l o g a x ( a > 0 且 a ≠ 1 , 特 别 当 a = e 时 , 记 为 y = l n x ) y=log_ax(a\gt 0 且a\ne 1,特别当a=e时,记为y=lnx) y=logax(a>0a=1,a=ey=lnx)
  • 三角函数:如 y = s i n x , y = c o s x , y = t a n x y=sinx,y=cosx,y=tanx y=sinx,y=cosx,y=tanx
  • 反三角函数:如 y = a r c s i n x , y = a r c c o s x , y = a r c t a n x y=arcsinx,y=arccosx,y=arctanx y=arcsinx,y=arccosx,y=arctanx

以上5类函数称为基本初等函数。

由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数。例如
y = 1 − x 2 , y = s i n 2 x , y = c o t x 2 y=\sqrt{1-x^2}, y=sin^2x, y=\sqrt{cot\frac x2} y=1x2 ,y=sin2x,y=cot2x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值