一、函数极限的定义
1、自变量趋于有限值时函数的极限
- 极限定义:
设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一去心邻域内有定义。如果存在常数 A A A,对于任意给定的正数 ϵ \epsilon ϵ(不论它有多么小),总存在正数 δ \delta δ,使得当x满足不等式 0 < ∣ x − x 0 ∣ < δ 0\lt\lvert x-x_0\rvert\lt\delta 0<∣x−x0∣<δ时,对应的函数值 f ( x ) f(x) f(x)都满足不等式
∣ f ( x ) − A ∣ < ϵ \lvert f(x)-A\rvert\lt\epsilon ∣f(x)−A∣<ϵ
那么常数 A A A就叫做函数 f ( x ) f(x) f(x)当 x → x 0 x\to x_0 x→x0时极限,记做
lim x → x 0 f ( x ) = A 或 f ( x ) → A ( 当 x → x 0 ) \lim\limits_{x\to x_0}{f(x)}=A 或 f(x)\to A (当 x\to x_0) x→x0limf(x)=A或f(x)→A(当x→x0)
-
提示: x → x 0 x\to x_0 x→x0时 f ( x ) f(x) f(x)有没有极限,与 f ( x ) f(x) f(x)在点 x 0 x_0 x0是否有定义并无关系
-
函数极限证明要点
- lim x → x 0 f ( x ) = A ⇔ ∀ ϵ > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ < ϵ \lim\limits_{x\to x_0}{f(x)}=A\Leftrightarrow\forall\epsilon\gt 0,\exist\delta\gt 0,当0\lt\lvert x-x_0\rvert\lt\delta,有\lvert f(x)-A\rvert\lt\epsilon x→x0limf(x)=A⇔∀ϵ>0,∃δ>0,当0<∣x−x0∣<δ,有∣f(x)−A∣<ϵ
- ϵ \epsilon ϵ是任意的大于0的数,只要我们找到大于0的正数 δ \delta δ,那么根据定义罗列条件,证明完毕
- 怎么找呢?根据下面2个不等式来找出
δ
和
ϵ
\delta和\epsilon
δ和ϵ的关系
- 不等式1: 0 < ∣ x − x 0 ∣ < δ 0\lt\lvert x-x_0\rvert\lt\delta 0<∣x−x0∣<δ
- 不等式2: ∣ f ( x ) − A ∣ < ϵ \lvert f(x)-A\rvert\lt\epsilon ∣f(x)−A∣<ϵ
-
示例:证明当 x 0 > 0 时 , lim x → x 0 x = x 0 x_0\gt 0时,\lim\limits_{x\to x_0}{\sqrt x}=\sqrt x_0 x0>0时,x→x0limx=x0
证 : ∀ ϵ > 0 , 因 为 ∣ f ( x ) − A ∣ = ∣ x − x 0 ∣ = ∣ x − x 0 x + x 0 ∣ ≤ 1 x 0 ∣ x − x 0 ∣ , 要 使 ∣ f ( x ) − A ∣ < ϵ , 只 要 ∣ x − x 0 ∣ < x 0 ϵ 且 x ≥ 0 , 而 x ≥ 0 , 需 要 ∣ x − x 0 ∣ ≤ x 0 , 取 δ = min { x 0 , x 0 ϵ } , 则 当 x 满 足 不 等 式 0 < ∣ x − x 0 ∣ < δ 时 , ∣ f ( x ) − A ∣ = ∣ x − x 0 ∣ < ϵ , 即 lim x → x 0 x = x 0 证:\forall\epsilon\gt 0,因为\\ \lvert f(x)-A\rvert = \lvert\sqrt x-\sqrt x_0\rvert=\lvert \frac{x-x_0}{\sqrt x+\sqrt x_0}\rvert\le\frac{1}{\sqrt x_0}\lvert x-x_0\rvert ,\\ 要使\lvert f(x)-A\rvert\lt\epsilon,只要\lvert x-x_0\rvert\lt\sqrt x_0\epsilon 且x\ge 0,\\ 而x\ge 0,需要\lvert x-x_0\rvert\le x_0,\\ 取\delta = \min\{x_0,\sqrt x_0\epsilon\},则当x满足不等式0\lt\lvert x-x_0\rvert\lt\delta时,\\ \lvert f(x)-A\rvert =\lvert\sqrt x-\sqrt x_0\rvert\lt\epsilon,即\\ \lim\limits_{x\to x_0}{\sqrt x}=\sqrt x_0 证:∀ϵ>0,因为∣f(x)−A∣=∣x−x0∣=∣x+x0x−x0∣≤x01∣x−x0∣,要使∣f(x)−A∣<ϵ,只要∣x−x0∣<x0ϵ且x≥0,而x≥0,需要∣x−x0∣≤x0,取δ=min{x0,x0ϵ},则当x满足不等式0<∣x−x0∣<δ时,∣f(x)−A∣=∣x−x0∣<ϵ,即x→x0limx=x0
2、自变量趋于无穷大时函数的极限
- 定义
设函数 f ( x ) f(x) f(x)当 ∣ x ∣ \lvert x\rvert ∣x∣大于某一正数时有定义。如果存在常数 A A A,对于任意给定的正数 ϵ \epsilon ϵ(不论它有多么小),总存在这正数 X X X,使得当 x x x满足不等式
∣ f ( x ) − A ∣ < ϵ , \lvert f(x)-A\rvert\lt\epsilon, ∣f(x)−A∣<ϵ,
那么常数 A A A就叫做函数 f ( x ) 当 x → ∞ f(x)当x\to\infty f(x)当x→∞时的极限,记做
lim x → ∞ f ( x ) = A 或 f ( x ) → A ( 当 x → ∞ ) \lim\limits_{x\to\infty}{f(x)}=A 或 f(x)\to A(当x\to\infty) x→∞limf(x)=A或f(x)→A(当x→∞)
-
简记:
lim x → ∞ f ( x ) = A ⇔ ∀ ϵ > 0 , ∃ X > 0 , 当 ∣ x ∣ > X 时 , 有 ∣ f ( x ) − A ∣ < ϵ \lim\limits_{x\to\infty}{f(x)}=A\Leftrightarrow\forall\epsilon\gt 0,\exists X\gt0,当\lvert x\rvert\gt X时,有\lvert f(x)-A\rvert\lt\epsilon x→∞limf(x)=A⇔∀ϵ>0,∃X>0,当∣x∣>X时,有∣f(x)−A∣<ϵ -
证明要点:
- ϵ \epsilon ϵ是任意的大于0的数,只要我们找到正数 X X X,那么根据定义罗列条件,证明完毕
- 怎么找呢?根据下面2个不等式来找出
X
和
ϵ
X和\epsilon
X和ϵ的关系
- 不等式1: ∣ x ∣ > X \lvert x\rvert\gt X ∣x∣>X
- 不等式2: ∣ f ( x ) − A ∣ < ϵ \lvert f(x)-A\rvert\lt\epsilon ∣f(x)−A∣<ϵ
-
示例:证明 lim x → ∞ 1 x = 0 \lim\limits_{x\to\infty}{\frac{1}{x}}=0 x→∞limx1=0
∀ ϵ > 0 , ∣ f ( x ) − A ∣ = ∣ 1 x − 0 ∣ = 1 ∣ x ∣ , 要 使 ∣ f ( x ) − A ∣ < ϵ , 即 1 ∣ x ∣ < ϵ ⇒ ∣ x ∣ > 1 ϵ , 取 X = 1 ϵ , 当 ∣ x ∣ > X , 不 等 式 , ∣ 1 x − 0 ∣ < ϵ 成 立 , 即 lim x → ∞ 1 x = 0 \forall\epsilon\gt 0,\\ \lvert f(x)-A\rvert =\lvert\frac{1}{x}-0\rvert=\frac{1}{\lvert x\rvert},\\ 要使\lvert f(x)-A\rvert\lt\epsilon,即\frac{1}{\lvert x\rvert}\lt\epsilon\Rightarrow \lvert x\rvert\gt\frac{1}{\epsilon},\\ 取X=\frac{1}{\epsilon},当\lvert x\rvert\gt X,不等式,\\ \lvert\frac{1}{x}-0\rvert\lt\epsilon 成立,即\\ \lim\limits_{x\to\infty}{\frac{1}{x}}=0 ∀ϵ>0,∣f(x)−A∣=∣x1−0∣=∣x∣1,要使∣f(x)−A∣<ϵ,即∣x∣1<ϵ⇒∣x∣>ϵ1,取X=ϵ1,当∣x∣>X,不等式,∣x1−0∣<ϵ成立,即x→∞limx1=0
二、函数极限的性质
- 定理1:函数极限的唯一性
如果 lim x → x 0 f ( x ) \lim\limits_{x\to x_0}{f(x)} x→x0limf(x)存在,那么这极限唯一
反 证 法 证 明 : 假 设 lim x → x 0 f ( x ) 有 2 个 极 限 A 1 , A 2 , 且 A 1 > A 2 。 取 ϵ = A 1 − A 2 2 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A 1 ∣ < ϵ = A 1 − A 2 2 ∣ f ( x ) − A 2 ∣ < ϵ = A 1 − A 2 2 不 等 式 1 ⇒ A 1 − A 1 − A 2 2 < f ( x ) ⇒ A 1 + A 2 2 < f ( x ) 与 不 等 式 2 ⇒ f ( x ) < A 2 + A 1 − A 2 2 ⇒ f ( x ) < A 1 + A 2 2 相 矛 盾 所 以 lim x → x 0 f ( x ) 存 在 , 那 么 这 极 限 唯 一 反证法证明:假设 \lim\limits_{x\to x_0}{f(x)}有2个极限A_1,A_2,且A_1\gt A_2。 取\epsilon = \frac{A_1-A_2}{2},\exists\delta\gt 0,当0\lt\lvert x-x_0\rvert\lt\delta,有\\ \lvert f(x)-A_1\rvert\lt\epsilon=\frac{A_1-A_2}{2} \\ \lvert f(x)-A_2\rvert\lt\epsilon=\frac{A_1-A_2}{2}\\ 不等式1\Rightarrow A_1-\frac{A_1-A_2}{2}\lt f(x)\Rightarrow \frac{A_1+A_2}{2}\lt f(x) \\ 与不等式2\Rightarrow f(x)\lt A_2+\frac{A_1-A_2}{2}\Rightarrow f(x)\lt\frac{A_1+A_2}{2} 相矛盾 \\ 所以\lim\limits_{x\to x_0}{f(x)}存在,那么这极限唯一 反证法证明:假设x→x0limf(x)有2个极限A1,A2,且A1>A2。取ϵ=2A1−A2,∃δ>0,当0<∣x−x0∣<δ,有∣f(x)−A1∣<ϵ=2A1−A2∣f(x)−A2∣<ϵ=2A1−A2不等式1⇒A1−2A1−A2<f(x)⇒2A1+A2<f(x)与不等式2⇒f(x)<A2+2A1−A2⇒f(x)<2A1+A2相矛盾所以x→x0limf(x)存在,那么这极限唯一
- 定理2:函数极限的局部有界性
如果 lim x → x 0 f ( x ) = A \lim\limits_{x\to x_0}{f(x)}=A x→x0limf(x)=A,那么存在常数 M > 0 , δ > 0 M\gt 0,\delta\gt 0 M>0,δ>0,使得 当 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) ∣ ≤ M 当0\lt\lvert x-x_0\rvert\lt\delta,有\lvert f(x)\rvert\le M 当0<∣x−x0∣<δ,有∣f(x)∣≤M
证 明 : 取 ϵ = 1 > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ < 1 ⇒ ∣ f ( x ) ∣ = ∣ f ( x ) − A + A ∣ ≤ ∣ f ( x ) − A ∣ + ∣ A ∣ < ∣ A ∣ + 1 取 M = ∣ A ∣ + 1 , 则 定 理 2 成 立 。 证明:取\epsilon = 1\gt 0,\exists\delta\gt 0,当0\lt\lvert x-x_0\rvert\lt\delta,有 \\ \lvert f(x)-A\rvert\lt 1\Rightarrow \lvert f(x)\rvert =\lvert f(x)-A+A\rvert\le\lvert f(x)-A\rvert+\lvert A\rvert\lt\lvert A\rvert + 1 \\ 取M=\lvert A\rvert + 1,则定理2成立。 证明:取ϵ=1>0,∃δ>0,当0<∣x−x0∣<δ,有∣f(x)−A∣<1⇒∣f(x)∣=∣f(x)−A+A∣≤∣f(x)−A∣+∣A∣<∣A∣+1取M=∣A∣+1,则定理2成立。
- 定理3:函数极限的局部保号性
lim x → x 0 f ( x ) = A , A > 0 ( 或 者 A < 0 ) \lim\limits_{x\to x_0}{f(x)}=A,A\gt 0(或者A\lt 0) x→x0limf(x)=A,A>0(或者A<0),那么存在 δ > 0 \delta\gt 0 δ>0,使得 当 0 < ∣ x − x 0 ∣ < δ , 有 f ( x ) > 0 ( 或 者 f ( x ) < 0 ) 当0\lt\lvert x-x_0\rvert\lt\delta,有f(x)\gt 0(或者f(x)\lt 0) 当0<∣x−x0∣<δ,有f(x)>0(或者f(x)<0)
以 A > 0 为 例 证 明 , 当 A < 0 类 似 。 取 ϵ = A 2 > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ < A 2 ⇒ f ( x ) > A 2 > 0 以A\gt 0 为例证明,当A\lt 0类似。 \\ 取\epsilon = \frac{A}{2}\gt 0,\exists\delta\gt 0,当0\lt\lvert x-x_0\rvert\lt\delta,有 \\ \lvert f(x)-A\rvert\lt \frac{A}{2}\Rightarrow f(x)\gt\frac{A}{2}\gt 0 以A>0为例证明,当A<0类似。取ϵ=2A>0,∃δ>0,当0<∣x−x0∣<δ,有∣f(x)−A∣<2A⇒f(x)>2A>0
- 定理 3 . 3^. 3.
如果 lim x → x 0 f ( x ) = A ( A ≠ 0 ) \lim\limits_{x\to x_0}{f(x)}=A(A\neq 0) x→x0limf(x)=A(A=0),那么就存在这 x 0 x_0 x0的某一去心邻域$\dot U(x_0)当x\in\dot U(x_0) $时,就有 ∣ f ( x ) ∣ > A 2 \lvert f(x)\rvert\gt \frac{A}{2} ∣f(x)∣>2A
证明同上
- 推论
如果在 x 0 x_0 x0的某去心邻域内 f ( x ) ≥ 0 f(x)\ge 0 f(x)≥0(或 f ( x ) ≤ 0 f(x)\le 0 f(x)≤0),而且 lim x → x 0 f ( x ) = A \lim\limits_{x\to x_0}{f(x)}=A x→x0limf(x)=A,那么 A ≥ 0 ( 或 A ≤ 0 ) A\ge 0(或A\le 0) A≥0(或A≤0)
- 定理4:函数极限与数列极限的关系
如果极限 lim x → x 0 f ( x ) \lim\limits_{x\to x_0}{f(x)} x→x0limf(x)存在, { x n } \{x_n\} {xn}为函数 f ( x ) f(x) f(x)的定义域内任一收敛于 x 0 x_0 x0的数列,且满足: x n ≠ x 0 ( x ∈ N + ) x_n\neq x_0(x\in N_+) xn=x0(x∈N+),那么响应的函数值数列 { f ( x n } \{f(x_n\} {f(xn}必收敛,且 lim n → ∞ f ( x n ) = lim x → x 0 f ( x ) \lim\limits_{n\to \infty}{f(x_n)}=\lim\limits_{x\to x_0}{f(x)} n→∞limf(xn)=x→x0limf(x)
证 明 : 设 lim x → ∞ f ( x ) = A , 则 ∀ ϵ > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ < ϵ 又 因 lim n → ∞ x n = x 0 , 故 对 δ > 0 , ∃ N , 当 n > N 时 , 有 ∣ x n − x 0 ∣ < δ 由 假 设 , x n ≠ x 0 ( n ∈ N + ) , 故 当 n > N 时 , 0 < ∣ x n − x 0 ∣ < δ , 从 而 ∣ f ( x n ) − A ∣ < ϵ , 即 lim n → ∞ f ( x n ) = lim x → ∞ f ( x ) = A 证明:设\lim\limits_{x\to\infty}{f(x)}=A,则 \\ \forall\epsilon\gt 0,\exists\delta\gt0,当0\lt\lvert x-x_0\rvert\lt\delta,有 \\ \lvert f(x)-A\rvert\lt\epsilon \\ 又因 \lim\limits_{n\to \infty}{x_n}= x_0 ,故对\delta\gt0,\exists N,当n\gt N 时,有 \\ \lvert x_n-x_0\rvert\lt \delta \\ 由假设,x_n\neq x_0(n\in N_+),故当n\gt N时,0\lt\lvert x_n-x_0\rvert\lt \delta,从而\lvert f(x_n)-A\rvert\lt\epsilon,即\\ \lim\limits_{n\to\infty}{f(x_n)}=\lim\limits_{x\to\infty}{f(x)}=A 证明:设x→∞limf(x)=A,则∀ϵ>0,∃δ>0,当0<∣x−x0∣<δ,有∣f(x)−A∣<ϵ又因n→∞limxn=x0,故对δ>0,∃N,当n>N时,有∣xn−x0∣<δ由假设,xn=x0(n∈N+),故当n>N时,0<∣xn−x0∣<δ,从而∣f(xn)−A∣<ϵ,即n→∞limf(xn)=x→∞limf(x)=A