0109连续函数的运算和初等函数的连续性-函数与极限-高等数学

1 连续函数的和、差、积、商的连续性

由函数在某点连续的定义和极限的四则运算法则,立即可得出一下定理:

定理1:函数 f ( x ) f(x) f(x)和函数 g ( x ) g(x) g(x)在点 x 0 x_0 x0处连续,则它们的和(差) f ± g f\pm g f±g、积 f ⋅ g f\cdot g fg及商 f g ( 当 g ( x 0 ) ≠ 0 时 ) \frac{f}{g}(当g(x_0)\not =0时) gf(g(x0)=0)都在点 x 0 x_0 x0处连续。

2 反函数和复合函数的连续性

定理2:如果函数 f ( x ) f(x) f(x)在区间 I x I_x Ix上单调增加(或单调减少)且连续,那么它的反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)也在对应的区间 I y = { y ∣ y = f ( x ) , x ∈ I x } I_y=\{y|y=f(x),x\in I_x\} Iy={yy=f(x),xIx}上单调增加(或单调减少)且连续。

定理3:设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)复合而成, U ∘ ( x 0 ) ⊂ D f ∘ g \overset{\circ}{U}(x_0)\subset D_{f\circ g} U(x0)Dfg.若 lim ⁡ x → x 0 g ( x ) = u 0 \lim\limits_{x\to x_0}{g(x)=u_0} xx0limg(x)=u0,而函数 y = f ( u ) y=f(u) y=f(u) u = u 0 u=u_0 u=u0连续,则

lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) \lim\limits_{x\to x_0}{f[g(x)]}=\lim\limits_{u\to u_0}{f(u)}=f(u_0) xx0limf[g(x)]=uu0limf(u)=f(u0)

定理3证明:
$$

$$

因为 y = f ( u ) 在 u = u 0 处连续,即 lim ⁡ u → u 0 f ( u ) = f ( u 0 ) ,即 ∀ ϵ > 0 , ∃ η > 0 , 当 0 < ∣ u − u 0 ∣ < η 时,有 ∣ f ( u ) − u 0 ∣ < ϵ 又因为 lim ⁡ x → x 0 g ( x ) = u 0 , 对于上述 ϵ , η , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时,有 ∣ g ( x ) − u 0 ∣ < η , 即 当 0 < ∣ x − x 0 ∣ < δ 时,有 ∣ u − u 0 ∣ < η , ∣ f [ g ( x ) ] − u 0 ∣ < ϵ 即 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) ( 9 − 1 ) 因为y=f(u)在u=u_0处连续,即\lim\limits_{u\to u_0}{f(u)}=f(u_0) ,即 \\ \forall\epsilon\gt 0,\exists\eta\gt0,当0\lt|u-u_0|\lt\eta时,有|f(u)-u_0|\lt\epsilon \\ 又因为\lim\limits_{x\to x_0}{g(x)=u_0},\\ 对于上述\epsilon,\eta,\exists\delta\gt0,当0<|x-x_0|\lt\delta时,有|g(x)-u_0|\lt\eta, 即\\ 当0<|x-x_0|\lt\delta时,有|u-u_0|\lt\eta ,|f[g(x)]-u_0|\lt\epsilon 即\\ \lim\limits_{x\to x_0}{f[g(x)]}=\lim\limits_{u\to u_0}{f(u)}=f(u_0)\qquad (9-1) 因为y=f(u)u=u0处连续,即uu0limf(u)=f(u0),即ϵ>0,η>0,0<uu0<η时,有f(u)u0<ϵ又因为xx0limg(x)=u0,对于上述ϵ,ηδ>0,0<xx0<δ时,有g(x)u0<η,0<xx0<δ时,有uu0<ηf[g(x)]u0<ϵxx0limf[g(x)]=uu0limf(u)=f(u0)(91)

    • 9-1式可以写成: lim ⁡ x → x 0 f [ g ( x ) ] = f ( u 0 ) = f [ lim ⁡ x → x 0 g ( x ) ] \lim\limits_{x\to x_0}{f[g(x)]}=f(u_0)=f[\lim\limits_{x\to x_0}{g(x)}] xx0limf[g(x)]=f(u0)=f[xx0limg(x)]。表示求复合函数极限时,函数符号 f f f与极限符号 lim ⁡ x → x 0 \lim\limits_{x\to x_0} xx0lim可以交换次序

定理4:设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)复合而成, U ∘ ( x 0 ) ⊂ D f ∘ g \overset{\circ}{U}(x_0)\subset D_{f\circ g} U(x0)Dfg.若函数 u = g ( x ) u=g(x) u=g(x) x = x 0 x=x_0 x=x0处连续且 g ( x 0 ) = u 0 g(x_0)=u_0 g(x0)=u0,而函数 y = f ( u ) y=f(u) y=f(u) u = u 0 u=u_0 u=u0连续,则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] x = x 0 x=x_0 x=x0连续

证明:由定理3得 lim ⁡ x → x 0 f [ g ( x ) ] = f ( u 0 ) = f [ g ( x 0 ) ] \lim\limits_{x\to x_0}{f[g(x)]}=f(u_0)=f[g(x_0)] xx0limf[g(x)]=f(u0)=f[g(x0)] 证毕。

例4:讨论 y = cos ⁡ 1 x y=\cos\frac{1}{x} y=cosx1的连续性

函数 y = cos ⁡ 1 x 可以看成由函数 y = cos ⁡ u , u = 1 x 复合而成。 因为函数 cos ⁡ u 在 R 上是连续的,函数 1 x 在区间 ( − ∞ , 0 ) , ( 0 , + ∞ ) 上是连续的。 所以函数 y = cos ⁡ 1 x 在区间 ( − ∞ , 0 ) , ( 0 , + ∞ ) 是连续的,在 x = 0 不连续 函数y=\cos\frac{1}{x}可以看成由函数y=\cos u,u=\frac{1}{x}复合而成。 \\ 因为函数\cos u在R上是连续的,函数\frac{1}{x}在区间(-\infty,0),(0,+\infty)上是连续的。 \\ 所以函数y=\cos\frac{1}{x}在区间(-\infty,0),(0,+\infty)是连续的,在x=0不连续 函数y=cosx1可以看成由函数y=cosu,u=x1复合而成。因为函数cosuR上是连续的,函数x1在区间(,0),(0,+)上是连续的。所以函数y=cosx1在区间(,0),(0,+)是连续的,在x=0不连续

3 初等函数的连续性

  • 基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数。

复习下初等函数定义:

由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数。

    1. 基本初等函数在其定义域内都是连续的。
    2. 一切初等函数在其定义区间(定义域内的空间)都是连续的。

例5:求 lim ⁡ x → 0 log ⁡ a ( 1 + x ) x \lim\limits_{x\to 0}{\frac{\log_a(1+x)}{x}} x0limxloga(1+x)
当 x → 0 时,分子分母都趋向于 0 ,属于 0 0 型未定式 lim ⁡ x → 0 log ⁡ a ( 1 + x ) x = lim ⁡ x → 0 log ⁡ a ( 1 + x ) 1 x = log ⁡ a e = 1 ln ⁡ a 当x\to 0时,分子分母都趋向于0,属于\frac{0}{0}型未定式 \\ \lim\limits_{x\to 0}{\frac{\log_a(1+x)}{x}}=\lim\limits_{x\to 0}{\log_a(1+x)^{\frac{1}{x}}}=\log_ae=\frac{1}{\ln a} x0时,分子分母都趋向于0,属于00型未定式x0limxloga(1+x)=x0limloga(1+x)x1=logae=lna1
例6:求 lim ⁡ x → 0 a x − 1 x \lim\limits_{x\to 0}{\frac{a^x-1}{x}} x0limxax1
lim ⁡ x → 0 a x − 1 x 也属于 0 0 未定式 令 t = a x − 1 , 当 x → 0 时, t → 0 , x = log ⁡ a ( t + 1 ) , 则 lim ⁡ x → 0 a x − 1 x = lim ⁡ t → 0 t log ⁡ a ( t + 1 ) = ln ⁡ a \lim\limits_{x\to 0}{\frac{a^x-1}{x}}也属于\frac{0}{0}未定式 \\ 令t=a^x-1,当x\to 0时,t\to 0 ,\quad x=\log_a(t+1) ,则 \\ \lim\limits_{x\to 0}{\frac{a^x-1}{x}}=\lim\limits_{t\to 0}{\frac{t}{\log_a(t+1)}}=\ln a x0limxax1也属于00未定式t=ax1,x0时,t0,x=loga(t+1),x0limxax1=t0limloga(t+1)t=lna
例7:求 lim ⁡ x → 0 ( 1 + x ) α − 1 x ( α ∈ R ) \lim\limits_{x\to 0}{\frac{(1+x)^\alpha-1}{x}}(\alpha\in R) x0limx(1+x)α1(αR)
lim ⁡ x → 0 ( 1 + x ) α − 1 x 也属于 0 0 未定式 令 t = ( 1 + x ) α − 1 ,当 x → 0 时, t → 0 , 于是 lim ⁡ x → 0 ( 1 + x ) α − 1 x = lim ⁡ x → 0 [ ( 1 + x ) α − 1 l n ( 1 + x ) α ⋅ α ln ⁡ ( 1 + x ) x ] = = lim ⁡ t → 0 t ln ⁡ ( 1 + t ) ⋅ lim ⁡ x → 0 α ln ⁡ ( 1 + x ) x = α \lim\limits_{x\to 0}{\frac{(1+x)^\alpha-1}{x}}也属于\frac{0}{0}未定式 \\ 令t=(1+x)^\alpha-1,当x\to 0时,t\to 0 ,于是\\ \lim\limits_{x\to 0}{\frac{(1+x)^\alpha-1}{x}}=\lim\limits_{x\to 0}{[\frac{(1+x)^\alpha-1}{ln(1+x)^\alpha}\cdot\frac{\alpha\ln(1+x)}{x}]}= \\ =\lim\limits_{t\to 0}{\frac{t}{\ln(1+t)}}\cdot\lim\limits_{x\to 0}{\frac{\alpha\ln(1+x)}{x}}=\alpha x0limx(1+x)α1也属于00未定式t=(1+x)α1,当x0时,t0,于是x0limx(1+x)α1=x0lim[ln(1+x)α(1+x)α1xαln(1+x)]==t0limln(1+t)tx0limxαln(1+x)=α
有例5、例6、例7可得以下三个常用的等价无穷小

当x\to 0时 , ln ⁡ ( 1 + x ) ∼ x e x − 1 ∼ x ( 1 + x ) α ∼ α x \ln(1+x)\sim x\qquad e^x-1\sim x\qquad (1+x)^\alpha\sim\alpha x ln(1+x)xex1x(1+x)ααx

其中x可以是自变量任意同等变化下的无穷小,比如 lim ⁡ f ( x ) = 0 \lim f(x)=0 limf(x)=0,上述等价无穷小可以变化为

l n [ 1 + f ( x ) ] ∼ f ( x ) e f ( x ) − 1 ∼ f ( x ) [ 1 + f ( x ) ] α ∼ α f ( x ) ln[1+f(x)]\sim f(x)\qquad e^{f(x)-1}\sim f(x)\qquad [1+f(x)]^\alpha\sim\alpha f(x) ln[1+f(x)]f(x)ef(x)1f(x)[1+f(x)]ααf(x)

一般地,对于形如 u ( x ) v ( x ) ( u ( x ) > 0 , u ( x ) ≠ 1 ) u(x)^{v(x)}(u(x)\gt 0,u(x)\not=1) u(x)v(x)(u(x)>0,u(x)=1)的函数通常称为幂指函数,如果

lim ⁡ u ( x ) = a > 0 , lim ⁡ v ( x ) = b \lim u(x)=a\gt 0,\lim v(x)=b limu(x)=a>0,limv(x)=b,

那么 lim ⁡ u ( x ) v ( x ) = a b \lim u(x)^{v(x)}=a^b limu(x)v(x)=ab

4 练习

例8: lim ⁡ x → 4 1 + 2 x − 3 x − 4 \lim\limits_{x\to 4}{\frac{\sqrt{1+2x}-3}{x-4}} x4limx41+2x 3
0 0 型未定式 根号后 − 3 不能直接利用等价无穷小,这里我们进行分子有理化于是 lim ⁡ x → 4 1 + 2 x − 3 x − 4 = lim ⁡ x → 4 ( 1 + 2 x − 3 ) ( 1 + 2 x + 3 ) ( x − 4 ) ( 1 + 2 x + 3 ) = lim ⁡ x → 4 2 ( x − 4 ) ( x − 4 ) ( 1 + 2 x + 3 ) = 1 3 \frac{0}{0}型未定式 \\ 根号后-3不能直接利用等价无穷小,这里我们进行分子有理化 于是\\ \lim\limits_{x\to 4}{\frac{\sqrt{1+2x}-3}{x-4}}=\lim\limits_{x\to 4}{\frac{(\sqrt{1+2x}-3)(\sqrt{1+2x}+3)}{(x-4)(\sqrt{1+2x}+3)}} \\=\lim\limits_{x\to 4}{\frac{2(x-4)}{(x-4)(\sqrt{1+2x}+3)}}=\frac{1}{3} 00型未定式根号后3不能直接利用等价无穷小,这里我们进行分子有理化于是x4limx41+2x 3=x4lim(x4)(1+2x +3)(1+2x 3)(1+2x +3)=x4lim(x4)(1+2x +3)2(x4)=31
例9: lim ⁡ x → 0 ( 1 + 2 x ) 3 sin ⁡ x \lim\limits_{x\to0}{(1+2x)^{\frac{3}{\sin x}}} x0lim(1+2x)sinx3
x → 0 时, ( 1 + 2 x ) → 1 那极限不就是 1 吗? × 要明白底数在变,指数也在变 , 就是典型的幂指函数 可以给幂指函数底数和指数部分分别凑重要极限或者利用公式 a = e l n a 这里用前面的方法 lim ⁡ x → 0 ( 1 + 2 x ) 3 sin ⁡ x = lim ⁡ x → 0 ( 1 + 2 x ) 1 2 x 6 x sin ⁡ x = e 6 x\to 0时,(1+2x)\to 1那极限不就是1吗? × 要明白底数在变,指数也在变,就是典型的幂指函数 \\ 可以给幂指函数底数和指数部分分别凑重要极限或者利用公式 a = e^{lna} 这里用前面的方法 \\ \lim\limits_{x\to0}{(1+2x)^{\frac{3}{\sin x}}}=\lim\limits_{x\to0}{(1+2x)^{\frac{1}{2x}\frac{6x}{\sin x}}}=e^6 x0时,(1+2x)1那极限不就是1吗?×要明白底数在变,指数也在变,就是典型的幂指函数可以给幂指函数底数和指数部分分别凑重要极限或者利用公式a=elna这里用前面的方法x0lim(1+2x)sinx3=x0lim(1+2x)2x1sinx6x=e6
例10: lim ⁡ x → 0 ( 2 e x 1 + x − 1 ) x 2 + 1 x \lim\limits_{x\to0}{(2e^{\frac{x}{1+x}}-1)^{\frac{x^2+1}{x}}} x0lim(2e1+xx1)xx2+1
解: lim ⁡ x → 0 ( 2 e x 1 + x − 1 ) x 2 + 1 x = e lim ⁡ x → 0 ln ⁡ ( 2 e x 1 + x − 1 ) x 2 + 1 x 于是 lim ⁡ x → 0 ln ⁡ ( 2 e x 1 + x − 1 ) x 2 + 1 x = lim ⁡ x → 0 x 2 + 1 x ln ⁡ ( 2 e x 1 + x − 1 ) = lim ⁡ x → 0 x 2 + 1 x ln ⁡ ( 2 e x 1 + x − 2 + 1 ) = lim ⁡ x → 0 x 2 + 1 x 2 ( e x 1 + x − 1 ) = lim ⁡ x → 0 x 2 + 1 x 2 ( x 1 + x ) = 2 , 所以 lim ⁡ x → 0 ( 2 e x 1 + x − 1 ) x 2 + 1 x = e 2 解:\lim\limits_{x\to0}{(2e^{\frac{x}{1+x}}-1)^{\frac{x^2+1}{x}}}=e^{\lim\limits_{x\to0}{\ln(2e^{\frac{x}{1+x}}-1)^{\frac{x^2+1}{x}}}} 于是 \\ \lim\limits_{x\to0}{\ln(2e^{\frac{x}{1+x}}-1)^{\frac{x^2+1}{x}}}=\lim\limits_{x\to0}{\frac{x^2+1}{x}\ln(2e^{\frac{x}{1+x}}-1)} \\ =\lim\limits_{x\to0}{\frac{x^2+1}{x}\ln(2e^{\frac{x}{1+x}}-2+1)}=\lim\limits_{x\to0}{\frac{x^2+1}{x}2(e^{\frac{x}{1+x}}-1)}\\ =\lim\limits_{x\to0}{\frac{x^2+1}{x}2(\frac{x}{1+x})}=2,所以 \\ \lim\limits_{x\to0}{(2e^{\frac{x}{1+x}}-1)^{\frac{x^2+1}{x}}}=e^2 解:x0lim(2e1+xx1)xx2+1=ex0limln(2e1+xx1)xx2+1于是x0limln(2e1+xx1)xx2+1=x0limxx2+1ln(2e1+xx1)=x0limxx2+1ln(2e1+xx2+1)=x0limxx2+12(e1+xx1)=x0limxx2+12(1+xx)=2,所以x0lim(2e1+xx1)xx2+1=e2

4 后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P62~p65.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p10.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值