0505习题-定积分

1 定积分总结

定积分思维导图如下1-1所示,文件在末尾仓库中自取。

在这里插入图片描述

2 练习

例1 设在区间 [ a , b ] [a,b] [a,b]上, f ( x ) > 0 , f ′ ( x ) < 0 , f ′ ′ ( x ) > 0 ,记 S 1 = ∫ a b f ( x ) d x , S 2 = f ( b ) ( b − a ) , S 3 = 1 2 [ f ( b ) + f ( a ) ] ( b − a ) f(x)\gt0,f^{'}(x)\lt0,f^{''}(x)\gt0,记S_1=\int_a^bf(x)dx,S_2=f(b)(b-a),S_3=\frac{1}{2}[f(b)+f(a)](b-a) f(x)>0,f(x)<0,f′′(x)>0,记S1=abf(x)dx,S2=f(b)(ba),S3=21[f(b)+f(a)](ba),则

( A ) S 1 < S 2 < S 3 ( B ) S 2 < S 1 < S 3 ( C ) S 3 < S 1 < S 2 ( D ) S 2 < S 3 < S 1 (A) S_1\lt S_2\lt S_3\quad(B)S_2\lt S_1\lt S_3\quad(C)S_3\lt S_1\lt S_2\quad(D)S_2\lt S_3\lt S_1 A)S1<S2<S3(B)S2<S1<S3(C)S3<S1<S2(D)S2<S3<S1

分析含有定积分,区间断点比较大小,直观方式就是根据其几何意义来判断:

  • f ( x ) > 0 f(x)\gt0 f(x)>0图像在x轴上方; f ′ ( x ) < 0 f^{'}(x)\lt0 f(x)<0,函数单减; f ′ ′ ( x ) > 0 f^{''}(x)\gt0 f′′(x)>0,函数凹函数;

图像如下2-1所示:

在这里插入图片描述

S 2 为红线与 x = a , x = b , x 轴围成的面积, S 1 为绿线与其他三边围成的面积, S 3 为蓝线与其他三边围成的面积, ∴ S 2 < S 1 < S 3 S_2为红线与x=a,x=b,x轴围成的面积,S_1为绿线与其他三边围成的面积,S_3为蓝线与其他三边围成的面积,∴S_2\lt S_1\lt S_3 S2为红线与x=a,x=b,x轴围成的面积,S1为绿线与其他三边围成的面积,S3为蓝线与其他三边围成的面积,S2<S1<S3

例2 求 lim ⁡ x → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) \lim\limits_{x\to\infty}(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\cdots+\frac{1}{\sqrt{n^2+n}}) xlim(n2+1 1+n2+2 1++n2+n 1)

分析:形式数列求和的极限;区间 [ 0 , 1 ] 的定积分 ∫ 0 1 f ( x ) d x = lim ⁡ n → ∞ ∑ k = 1 n f ( i n ) 1 n [0,1]的定积分\int_0^1f(x)dx=\lim\limits_{n\to\infty}\displaystyle\sum_{k=1}^nf(\frac{i}{n})\frac{1}{n} [0,1]的定积分01f(x)dx=nlimk=1nf(ni)n1
解: lim ⁡ x → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) = lim ⁡ n → ∞ ∑ k = 1 n 1 1 + ( i n ) 2 1 n = ∫ 0 1 d x 1 + x 2 = ln ⁡ ( x + 1 + x 2 ) ∣ 0 1 = ln ⁡ ( 1 + 2 ) 解:\lim\limits_{x\to\infty}(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\cdots+\frac{1}{\sqrt{n^2+n}})=\lim\limits_{n\to\infty}\displaystyle\sum_{k=1}^n\frac{1}{\sqrt{1+(\frac{i}{n})^2}}\frac{1}{n}=\int_0^1\frac{dx}{\sqrt{1+x^2}}\\ =\ln(x+\sqrt{1+x^2})|_0^1=\ln(1+\sqrt2) 解:xlim(n2+1 1+n2+2 1++n2+n 1)=nlimk=1n1+(ni)2 1n1=011+x2 dx=ln(x+1+x2 )01=ln(1+2 )
例3 已知 f ( x ) = x − 2 ∫ 0 1 f ( x ) d x , 求 ∫ 0 1 f ( x ) d x 及 f ( x ) f(x)=x-2\int_0^1f(x)dx,求\int_0^1f(x)dx及f(x) f(x)=x201f(x)dx,01f(x)dxf(x)
解:设 ∫ 0 1 f ( x ) d x = A , 则 f ( x ) = x − 2 A , ∫ 0 1 f ( x ) d x = ( 1 2 x 2 − 2 A x ) ∣ 0 1 = 1 2 − 2 A = A A = 1 6 , f ( x ) = x + 1 6 解:设\int_0^1f(x)dx=A,则\\ f(x)=x-2A,\int_0^1f(x)dx=(\frac{1}{2}x^2-2Ax)|_0^1=\frac{1}{2}-2A=A\\ A=\frac{1}{6},f(x)=x+\frac{1}{6} 解:设01f(x)dx=A,f(x)=x2A,01f(x)dx=(21x22Ax)01=212A=AA=61,f(x)=x+61

例4 设 I = ∫ 0 π 4 ln ⁡ sin ⁡ x d x , J = ∫ 0 π 4 ln ⁡ cot ⁡ x d x , K = ∫ 0 π 4 ln ⁡ cos ⁡ x d x , 则 I , J , K 的大小关系是() I=\int_0^\frac{\pi}{4}\ln\sin xdx,J=\int_0^\frac{\pi}{4}\ln\cot xdx,K=\int_0^\frac{\pi}{4}\ln\cos xdx,则I,J,K的大小关系是() I=04πlnsinxdx,J=04πlncotxdx,K=04πlncosxdx,IJK的大小关系是()
解:当 x ∈ [ 0 , π 4 ] 时, sin ⁡ x ≤ cos ⁡ x ≤ cot ⁡ x ∵ ln ⁡ x 为单增函数所以 ln ⁡ sin ⁡ x ≤ ln ⁡ cos ⁡ x ≤ ln ⁡ cot ⁡ x 根据性质 4 推论 1 有 I < K < J 解:当x\in[0,\frac{\pi}{4}]时,\sin x\le\cos x\le\cot x\\ ∵\ln x为单增函数 所以\ln\sin x\le\ln\cos x\le\ln\cot x\\ 根据性质4推论1有 \quad I\lt K\lt J 解:当x[0,4π]时,sinxcosxcotxlnx为单增函数所以lnsinxlncosxlncotx根据性质4推论1I<K<J
例5 求由方程 x + y 2 + ∫ 0 1 arctan ⁡ x d x = ∫ 0 y − x sin ⁡ 2 t d t x+y^2+\int_0^1\arctan xdx=\int_0^{y-x}\sin^2tdt x+y2+01arctanxdx=0yxsin2tdt​ 所确定的导数 d y d x \frac{dy}{dx} dxdy
解:隐函数求导,上式两边对 x 求导 1 + 2 y y ′ + 0 = sin ⁡ 2 ( y − x ) ( y ′ − 1 ) d y d x = y ′ = sin ⁡ 2 ( y − x ) + 1 sin ⁡ 2 ( y − x ) − 2 y 解:隐函数求导,上式两边对x求导\\ 1+2yy^{'}+0=\sin^2(y-x)(y^{'}-1)\\ \frac{dy}{dx}=y^{'}=\frac{\sin^2(y-x)+1}{\sin^2(y-x)-2y} 解:隐函数求导,上式两边对x求导1+2yy+0=sin2(yx)(y1)dxdy=y=sin2(yx)2ysin2(yx)+1
例6 求 lim ⁡ x → 0 ∫ 0 sin ⁡ 2 x ln ⁡ ( 1 + t ) d t 1 + x 4 − 1 \lim\limits_{x\to0}\frac{\int_0^{\sin^2x}\ln(1+t)dt}{\sqrt{1+x^4}-1} x0lim1+x4 10sin2xln(1+t)dt
解:上式为带积分上限函数的 0 0 型未定式,考虑使用洛必达法则 x → 0 时, ( 1 + x ) α − 1 ∽ α x , ln ⁡ ( 1 + x ) ∽ x lim ⁡ x → 0 ∫ 0 sin ⁡ 2 x ln ⁡ ( 1 + t ) d t 1 + x 4 − 1 = lim ⁡ x → 0 d d x ∫ 0 sin ⁡ 2 x ln ⁡ ( 1 + t ) d t ( 1 2 x 4 ) ′ = lim ⁡ x → 0 ln ⁡ ( 1 + sin ⁡ 2 x ) 2 sin ⁡ x cos ⁡ x 2 x 3 = lim ⁡ x → 0 2 sin ⁡ 3 x cos ⁡ x 2 x 3 = 1 解:上式为带积分上限函数的\frac{0}{0}型未定式,考虑使用洛必达法则\\ x\to0时,(1+x)^\alpha-1\backsim \alpha x,\ln(1+x)\backsim x\\ \lim\limits_{x\to0}\frac{\int_0^{\sin^2x}\ln(1+t)dt}{\sqrt{1+x^4}-1}=\lim\limits_{x\to0}\frac{\frac{d}{dx}\int_0^{\sin^2x}\ln(1+t)dt}{(\frac{1}{2}x^4)^{'}}=\lim\limits_{x\to0}\frac{\ln(1+\sin^2x)2\sin x\cos x}{2x^3}\\ =\lim\limits_{x\to0}\frac{2\sin^3x\cos x}{2x^3}=1 解:上式为带积分上限函数的00型未定式,考虑使用洛必达法则x0时,(1+x)α1αx,ln(1+x)xx0lim1+x4 10sin2xln(1+t)dt=x0lim(21x4)dxd0sin2xln(1+t)dt=x0lim2x3ln(1+sin2x)2sinxcosx=x0lim2x32sin3xcosx=1
例7 求 ∫ − 2 2 x + ∣ x ∣ 2 + x 2 d x \int_{-2}^2\frac{x+|x|}{2+x^2}dx 222+x2x+xdx

分析:对称区间,考虑奇偶性
解: ∫ − 2 2 x + ∣ x ∣ 2 + x 2 d x = ∫ − 2 2 x 2 + x 2 d x + ∫ − 2 2 ∣ x ∣ 2 + x 2 d x = 0 + 2 ∫ 0 2 x 2 + x 2 d x = ln ⁡ ( 2 + x 2 ) ∣ 0 2 = ln ⁡ 3 解:\int_{-2}^2\frac{x+|x|}{2+x^2}dx=\int_{-2}^2\frac{x}{2+x^2}dx+\int_{-2}^2\frac{|x|}{2+x^2}dx=0+2\int_0^2\frac{x}{2+x^2}dx\\ =\ln(2+x^2)|_0^2=\ln3 解:222+x2x+xdx=222+x2xdx+222+x2xdx=0+2022+x2xdx=ln(2+x2)02=ln3
例8 设函数 f ( x ) , g ( x ) 在区间 [ − a , a ] 上连续, g ( x ) 为偶函数, f ( x ) 满足 f ( x ) + f ( − x ) = C , C 为常数 f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,f(x)满足f(x)+f(-x)=C,C为常数 f(x),g(x)在区间[a,a]上连续,g(x)为偶函数,f(x)满足f(x)+f(x)=C,C为常数

(1)证明 ∫ − a a f ( x ) g ( x ) d x = C ∫ 0 a g ( x ) d x \int_{-a}^af(x)g(x)dx=C\int_0^ag(x)dx aaf(x)g(x)dx=C0ag(x)dx

(2)利用上述结果,求 I = ∫ − π 2 π 2 cos ⁡ 4 x ⋅ ln ⁡ ( x + 4 + x 2 ) d x I=\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\cos^4x\cdot\ln(x+\sqrt{4+x^2})dx I=2π2πcos4xln(x+4+x2 )dx
( 1 )证明:已知 ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x , g ( x ) = g ( − x ) 则 ∫ − a a f ( x ) g ( x ) d x = ∫ 0 a [ f ( x ) g ( x ) + f ( − x ) g ( − x ) ] d x = ∫ 0 a [ f ( x ) + f ( − x ) ] g ( x ) d x = C ∫ 0 a g ( x ) d x ( 2 )解:令 g ( x ) = ln ⁡ ( x + 4 + x 2 ) , f ( x ) = cos ⁡ 4 x , 则 f ( x ) + f ( − x ) = ln ⁡ ( x + 4 + x 2 ) ) + ln ⁡ ( − x + 4 + x 2 ) = l n 4 I = ln ⁡ 4 ∫ 0 π 2 cos ⁡ 4 x d x = ln ⁡ 4 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 3 π 8 ln ⁡ 2 (1)证明:已知\int_{-a}^af(x)dx=\int_0^a[f(x)+f(-x)]dx,g(x)=g(-x)则\\ \int_{-a}^af(x)g(x)dx=\int_0^a[f(x)g(x)+f(-x)g(-x)]dx=\int_0^a[f(x)+f(-x)]g(x)dx\\ =C\int_0^ag(x)dx (2)解:令g(x)=\ln(x+\sqrt{4+x^2}),f(x)=\cos^4x,则\\ f(x)+f(-x)=\ln(x+\sqrt{4+x^2)})+\ln(-x+\sqrt{4+x^2})=ln4\\ I=\ln4\int_0^\frac{\pi}{2}\cos^4xdx=\ln4\cdot\frac{3}{4}\cdot\frac{1}{2}\cdot\frac{\pi}{2}=\frac{3\pi}{8}\ln2 1)证明:已知aaf(x)dx=0a[f(x)+f(x)]dx,g(x)=g(x)aaf(x)g(x)dx=0a[f(x)g(x)+f(x)g(x)]dx=0a[f(x)+f(x)]g(x)dx=C0ag(x)dx2)解:令g(x)=ln(x+4+x2 ),f(x)=cos4x,f(x)+f(x)=ln(x+4+x2) )+ln(x+4+x2 )=ln4I=ln402πcos4xdx=ln443212π=83πln2
例9 求 I = ∫ 0 98 π 1 − cos ⁡ 2 x d x I=\int_0^{98\pi}\sqrt{1-\cos2x}dx I=098π1cos2x dx
解: I = ∫ 0 98 π 1 − cos ⁡ 2 x d x = ∫ 0 98 π 2 ∣ sin ⁡ x ∣ d x ∣ sin ⁡ x ∣ 周期为 π ∴ I = 98 2 ∫ 0 π sin ⁡ x d x = − 98 2 cos ⁡ x ∣ 0 π = 196 2 解:I=\int_0^{98\pi}\sqrt{1-\cos2x}dx=\int_0^{98\pi}\sqrt2|\sin x|dx\\ |\sin x|周期为\pi\\ ∴I=98\sqrt2\int_0^\pi\sin xdx=-98\sqrt2\cos x|_0^\pi=196\sqrt2 解:I=098π1cos2x dx=098π2 sinxdxsinx周期为πI=982 0πsinxdx=982 cosx0π=1962
例10 求设
f ( x ) = { 1 1 + x , x ≥ 0 1 1 + e x , x < 0 f(x)= \begin{cases} \frac{1}{1+x},\quad x\ge0\\ \frac{1}{1+e^x},\quad x\lt0\\ \end{cases} f(x)={1+x1,x01+ex1,x<0
∫ 0 2 f ( x − 1 ) d x \int_0^2f(x-1)dx 02f(x1)dx

  • 分析定积分积分变量为x-1而给定的是关于x的表达式,所以需要进行变量替换

解:令 x − 1 = t , d x = d t ∫ 0 2 f ( x − 1 ) d x = ∫ − 1 1 f ( t ) d t 定积分和积分变量无关 , ∴ ∫ − 1 1 f ( x ) d x = ∫ − 1 0 f ( x ) d x + ∫ 0 1 f ( x ) d x = ∫ − 1 0 1 1 + e x d x + ∫ 0 1 1 1 + x d x = 1 − ∫ − 1 0 e x 1 + e x d x + ln ⁡ ( 1 + x ) ∣ 0 1 = 1 − ln ⁡ ( 1 + e x ) ∣ − 1 0 + ln ⁡ 2 = ln ⁡ ( e + 1 ) 解:令x-1=t,dx=dt\\ \int_0^2f(x-1)dx=\int_{-1}^1f(t)dt\\ 定积分和积分变量无关,\\ ∴\int_{-1}^1f(x)dx=\int_{-1}^0f(x)dx+\int_0^1f(x)dx\\ =\int_{-1}^0\frac{1}{1+e^x}dx+\int_0^1\frac{1}{1+x}dx\\ =1-\int_{-1}^0\frac{e^x}{1+e^x}dx+\ln(1+x)|_0^1\\ = 1-\ln(1+e^x)|_{-1}^0+\ln2=\ln(e+1) 解:令x1=t,dx=dt02f(x1)dx=11f(t)dt定积分和积分变量无关,11f(x)dx=10f(x)dx+01f(x)dx=101+ex1dx+011+x1dx=1101+exexdx+ln(1+x)01=1ln(1+ex)10+ln2=ln(e+1)

例11 已知 f ( 2 ) = 1 2 , f ′ ( 2 ) = 0 , ∫ 0 2 f ( x ) d x = 1 , 求 ∫ 0 1 x 2 f ′ ′ ( 2 x ) d x f(2)=\frac{1}{2},f^{'}(2)=0,\int_0^2f(x)dx=1,求\int_0^1x^2f^{''}(2x)dx f(2)=21,f(2)=0,02f(x)dx=1,01x2f′′(2x)dx
解:令 2 x = t , d x = 1 2 d t ∫ 0 1 x 2 f ′ ′ ( 2 x ) d x = 1 2 ∫ 0 2 ( 1 2 t ) 2 f ′ ′ ( t ) d t = 1 8 ∫ 0 2 x 2 d f ′ ( x ) = [ 1 8 x 2 f ′ ( x ) ] ∣ 0 2 − 1 4 ∫ 0 2 x d f ( x ) = − 1 4 x f ( x ) ∣ 0 2 + 1 4 ∫ 0 2 f ( x ) d x = − 1 4 + 1 4 = 0 解:令2x=t,dx=\frac{1}{2}dt\\ \int_0^1x^2f^{''}(2x)dx=\frac{1}{2}\int_0^2(\frac{1}{2}t)^2f^{''}(t)dt=\frac{1}{8}\int_0^2x^2df^{'}(x)\\ =[\frac{1}{8}x^2f^{'}(x)]|_0^2-\frac{1}{4}\int_0^2xdf(x)\\ =-\frac{1}{4}xf(x)|_0^2+\frac{1}{4}\int_0^2f(x)dx=-\frac{1}{4}+\frac{1}{4}=0 解:令2x=t,dx=21dt01x2f′′(2x)dx=2102(21t)2f′′(t)dt=8102x2df(x)=[81x2f(x)]024102xdf(x)=41xf(x)02+4102f(x)dx=41+41=0
例12 计算反常积分 I = ∫ 1 + ∞ d x x 1 + x 5 + x 10 d x I=\int_1^{+\infty}\frac{dx}{x\sqrt{1+x^5+x^{10}}}dx I=1+x1+x5+x10 dxdx
解:令 x = 1 t , d t = − 1 t 2 ∫ 1 + ∞ d x x 1 + x 5 + x 10 = − ∫ 1 0 1 t 2 ⋅ 1 1 t 1 + ( 1 t ) 5 + ( 1 t ) 10 d t = 1 5 ∫ 0 1 1 ( t 5 + 1 2 ) 2 + 3 4 d ( t 5 + 1 2 ) = [ 1 5 ln ⁡ ( t 5 + 1 2 + t 1 0 + t 5 + 1 ) ] ∣ 0 1 = 1 5 ln ⁡ ( 3 + 2 3 ) 解:令x=\frac{1}{t},dt=-\frac{1}{t^2}\\ \int_1^{+\infty}\frac{dx}{x\sqrt{1+x^5+x^{10}}}=-\int_1^0\frac{1}{t^2}\cdot\frac{1}{\frac{1}{t}\sqrt{1+(\frac{1}{t})^5+(\frac{1}{t})^{10}}}dt\\ =\frac{1}{5}\int_0^1\frac{1}{(t^5+\frac{1}{2})^2+\frac{3}{4}}d(t^5+\frac{1}{2})\\ =[\frac{1}{5}\ln(t^5+\frac{1}{2}+\sqrt{t^10+t^5+1})]|_0^1=\frac{1}{5}\ln(3+2\sqrt3) 解:令x=t1,dt=t211+x1+x5+x10 dx=10t21t11+(t1)5+(t1)10 1dt=5101(t5+21)2+431d(t5+21)=[51ln(t5+21+t10+t5+1 )]01=51ln(3+23 )
例13 设f(x)在区间[0,1]上可微,且满足 f ( 1 ) = 2 ∫ 0 1 2 x f ( x ) d x f(1)=2\int_0^\frac{1}{2}xf(x)dx f(1)=2021xf(x)dx,试证明在 ( 0 , 1 ) (0,1) (0,1)内至少存在一点 ξ , 使 f ( ξ ) + ξ f ′ ( ξ ) = 0 \xi,使f(\xi)+\xi f^{'}(\xi)=0 ξ,使f(ξ)+ξf(ξ)=0
证明:令 F ( x ) = x f ( x ) , f ( x ) 在 [ 0 , 1 ] 上可微,则 F ( x ) 在 [ 0 , 1 ] 上连续,在 ( 0 , 1 ) 可导 ∵ F ( 1 ) = f ( 1 ) = 2 ∫ 0 1 2 x f ( x ) d x , 根据定积分中值定理有 ∃ ξ ∈ [ 0 , 1 2 ] , 使得 2 ∫ 0 1 2 x f ( x ) d x = 2 ⋅ θ f ( θ ) ( 1 2 − 0 ) = θ f ( θ ) = F ( θ ) 即 ∃ θ ∈ [ 0 , 1 2 ] ⊂ ( 0 , 1 ) , 使得 F ( 1 ) = F ( θ ) , 根据罗尔定理有 ∃ ξ ∈ ( 0 , 1 ) 使得 F ′ ( ξ ) = 0 , 即 f ( ξ ) + ξ f ′ ( ξ ) = 0 证明:令F(x)=xf(x),f(x)在[0,1]上可微,则F(x)在[0,1]上连续,在(0,1)可导\\ ∵F(1)=f(1)=2\int_0^\frac{1}{2}xf(x)dx,根据定积分中值定理有\\ \exist \xi\in[0,\frac{1}{2}],使得\\ 2\int_0^{\frac{1}{2}}xf(x)dx=2\cdot\theta f(\theta)(\frac{1}{2}-0)=\theta f(\theta)=F(\theta)\\ 即\exist\theta\in[0,\frac{1}{2}]\subset(0,1),使得F(1)=F(\theta),根据罗尔定理有\\ \exist\xi\in(0,1)使得F^{'}(\xi)=0,即\\ f(\xi)+\xi f^{'}(\xi)=0 证明:令F(x)=xf(x),f(x)[0,1]上可微,则F(x)[0,1]上连续,在(0,1)可导F(1)=f(1)=2021xf(x)dx,根据定积分中值定理有ξ[0,21],使得2021xf(x)dx=2θf(θ)(210)=θf(θ)=F(θ)θ[0,21](0,1),使得F(1)=F(θ),根据罗尔定理有ξ(0,1)使得F(ξ)=0,f(ξ)+ξf(ξ)=0

例14 设 f ′ ( x ) 在 [ 0 , a ] f^{'}(x)在[0,a] f(x)[0,a]上连续,且 f ( 0 ) = 0 f(0)=0 f(0)=0。证明: ∣ ∫ 0 a f ( x ) d x ∣ ≤ M a 2 2 , 其中 M = m a x ∣ f ′ ( x ) ∣ , 0 ≤ x ≤ a |\int_0^af(x)dx|\le\frac{Ma^2}{2},其中M=max|f^{'}(x)|,0\le x\le a 0af(x)dx2Ma2,其中M=maxf(x),0xa
证明: [ 0 , a ] 上,根据拉格朗日中值定理有 f ( x ) − f ( 0 ) = f ′ ( ξ ) ( x − 0 ) ( ξ ∈ ( 0 , a ) ) , 即 f ( x ) = f ′ ( ξ ) x ∣ ∫ 0 a f ( x ) d x ∣ ≤ ∫ 0 a ∣ f ( x ) ∣ d x ≤ ∫ 0 a M x d x = 1 2 M x 2 ∣ 0 a = M a 2 2 ∴ ∣ ∫ 0 a f ( x ) d x ∣ ≤ M a 2 2 证明:[0,a]上,根据拉格朗日中值定理有\\ f(x)-f(0)=f^{'}(\xi)(x-0)(\xi\in(0,a)),即\\ f(x)=f^{'}(\xi)x\\ |\int_0^af(x)dx|\le\int_0^a|f(x)|dx\le\int_0^aMxdx\\ =\frac{1}{2}Mx^2|_0^a=\frac{Ma^2}{2}\\ ∴|\int_0^af(x)dx|\le\frac{Ma^2}{2} 证明:[0,a]上,根据拉格朗日中值定理有f(x)f(0)=f(ξ)(x0)(ξ(0,a)),f(x)=f(ξ)x0af(x)dx0af(x)dx0aMxdx=21Mx20a=2Ma20af(x)dx2Ma2

结语

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.p224-269.

[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p37.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值