0704一阶线性微分方程-微分方程

1 线性方程

1.1 定义

一阶微分方程:形式上能化成 d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的方程,叫做一阶线性微分方程。

一阶齐次微分方程:如果 Q ( x ) ≡ 0 Q(x)\equiv0 Q(x)0,那么方程称为奇次的;

一阶非齐次微分方程:如果 Q ( x ) ≢ 0 Q(x)\not\equiv0 Q(x)0,那么方程称为非齐次的。

注:

  • n介线性微分方程: d n y d x n + a 1 ( x ) d n − 1 y d x n − 1 + ⋯ + a n ( x ) y = f ( x ) \frac{d^ny}{dx^n}+a_1(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdots+a_n(x)y=f(x) dxndny+a1(x)dxn1dn1y++an(x)y=f(x)
  • 一阶线性微分方程对应的齐次方程: d y d x + P ( x ) y = 0 \frac{dy}{dx}+P(x)y=0 dxdy+P(x)y=0

1.2 解法(常数变易法)

1)先解对应的齐次方程
d y d x + P ( x ) y = 0 变量分离积分, ∫ d y y = − ∫ P ( x ) d x ⇒ ln ⁡ ∣ y ∣ = − ∫ P ( x ) d x + C 1 ⇒ y = C e − ∫ P ( x ) d x , C = ± e 1 C \frac{dy}{dx}+P(x)y=0\\ 变量分离积分,\int\frac{dy}{y}=-\int P(x)dx\\ \Rightarrow \ln|y|=-\int P(x)dx+C_1\Rightarrow y=Ce^{-\int P(x)dx},C=\pm e^C_1 dxdy+P(x)y=0变量分离积分,ydy=P(x)dxlny=P(x)dx+C1y=CeP(x)dx,C=±e1C
2)常数变易

  • 分析:

    • 方程变形: d y d x = − P ( x ) y + Q ( x ) \frac{dy}{dx}=-P(x)y+Q(x) dxdy=P(x)y+Q(x),一阶导数为两项之后;

    • 我们已经求的对应齐次方程通解: y = C e − ∫ P ( x ) d x y=Ce^{-\int P(x)dx} y=CeP(x)dx;

    • 假设非齐次方程的通解: y = u ( x ) e − ∫ P ( x ) d x y=u(x)e^{-\int P(x)dx} y=u(x)eP(x)dx;

    • 带入原方程求导。
      d y d x = u ′ e − ∫ P ( x ) d x − u P ( x ) e − ∫ P ( x ) d x ( 4 − 3 ) y = u ( x ) e − ∫ P ( x ) d x ( 4 − 4 ) 带入原方程, u ′ e − ∫ P ( x ) d x − u P ( x ) e − ∫ P ( x ) d x + u P ( x ) e − ∫ P ( x ) d x = Q ( x ) u ′ = Q ( x ) e ∫ P ( x ) d x , 两端积分 u = ∫ Q ( x ) e ∫ P ( x ) d x d x + C 带入 ( 4 − 4 ) , 便得非齐次线性方程的通解 y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x + C ] 两项之和形式, y = C e − ∫ P ( x ) d x + e − ∫ P ( x ) d x ∫ Q ( x ) e ∫ P ( x ) d x d x \frac{dy}{dx}=u^{'}e^{-\int P(x)dx}-uP(x)e^{-\int P(x)dx}\quad (4-3)\\ y=u(x)e^{-\int P(x)dx}\quad(4-4)\\ 带入原方程,u^{'}e^{-\int P(x)dx}-uP(x)e^{-\int P(x)dx}+uP(x)e^{-\int P(x)dx}=Q(x)\\ u^{'}=Q(x)e^{\int P(x)dx},两端积分\\ u=\int Q(x)e^{\int P(x)dx}dx+C\\ 带入(4-4),便得非齐次线性方程的通解\\ y=e^{-\int P(x)dx}[\int Q(x)e^{\int P(x)dx}+C]\\ 两项之和形式,y=Ce^{-\int P(x)dx}+e^{-\int P(x)dx}\int Q(x)e^{\int P(x)dx}dx dxdy=ueP(x)dxuP(x)eP(x)dx(43)y=u(x)eP(x)dx(44)带入原方程,ueP(x)dxuP(x)eP(x)dx+uP(x)eP(x)dx=Q(x)u=Q(x)eP(x)dx,两端积分u=Q(x)eP(x)dxdx+C带入(44),便得非齐次线性方程的通解y=eP(x)dx[Q(x)eP(x)dx+C]两项之和形式,y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx

注:

  • 对方程进行整理,化为标准形式: d y d x + P ( x ) y = Q ( x 0 ) \frac{dy}{dx}+P(x)y=Q(x0) dxdy+P(x)y=Q(x0);
  • y = C e − ∫ P ( x ) d x + e − ∫ P ( x ) d x ∫ Q ( x ) e ∫ P ( x ) d x d x y=Ce^{-\int P(x)dx}+e^{-\int P(x)dx}\int Q(x)e^{\int P(x)dx}dx y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx,为齐次方程通解+非齐次方程的一个特解;
  • 非齐次方程通解=齐次方程通解+非齐次方程的一个特解。

1.3 例题

例1 求解 ( x + 1 ) d y d x − 2 y = ( x + 1 ) 7 2 (x+1)\frac{dy}{dx}-2y=(x+1)^\frac{7}{2} (x+1)dxdy2y=(x+1)27
变形, d y d x − 2 x + 1 y = ( x + 1 ) 5 2 方程为一阶线性微分方程,带入公式通解公式: y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x + C ] e − ∫ P ( x ) d x = e − ∫ ( − 2 x + 1 ) d x = ( x + 1 ) 2 ∫ Q ( x ) e ∫ P ( x ) d x d x = ∫ ( x + 1 ) 5 2 ( x + 1 ) − 2 d x = 2 3 ( x + 1 ) 3 2 则原方程通解, y = ( x + 1 ) 2 [ 2 3 ( x + 1 ) 3 2 + C ] 变形,\frac{dy}{dx}-\frac{2}{x+1}y=(x+1)^\frac{5}{2}\\ 方程为一阶线性微分方程,带入公式通解公式:y=e^{-\int P(x)dx[\int Q(x)e^{\int P(x)dx}+C]}\\ e^{-\int P(x)dx}=e^{-\int(-\frac{2}{x+1})dx}=(x+1)^2\\ \int Q(x)e^{\int P(x)dx}dx=\int(x+1)^\frac{5}{2}(x+1)^{-2}dx=\frac{2}{3}(x+1)^\frac{3}{2} 则原方程通解,y=(x+1)^2[\frac{2}{3}(x+1)^\frac{3}{2}+C] 变形,dxdyx+12y=(x+1)25方程为一阶线性微分方程,带入公式通解公式:y=eP(x)dx[Q(x)eP(x)dx+C]eP(x)dx=e(x+12)dx=(x+1)2Q(x)eP(x)dxdx=(x+1)25(x+1)2dx=32(x+1)23则原方程通解,y=(x+1)2[32(x+1)23+C]

例2 求解 d y d x = y 2 x − y 2 \frac{dy}{dx}=\frac{y}{2x-y^2} dxdy=2xy2y
解:以 y 为自变量变形 d x d y − 2 y x = − y , 为一阶线性微分方程 方程通解, x = e − ∫ P ( y ) d y [ ∫ Q ( y ) e ∫ P ( y ) d y d y + C 1 ] 其中, P ( y ) = − 2 y , Q ( y ) = − y , 带入通解 x = e − ∫ − 2 y d y [ ∫ ( − y ) e ∫ − 2 y d y d y + C 1 ] = y 2 ( − ln ⁡ ∣ y ∣ + C ) , C 1 , C ∈ R 解:以y为自变量变形\\ \frac{dx}{dy}-\frac{2}{y}x=-y,为一阶线性微分方程\\ 方程通解,x=e^{-\int P(y)dy}[\int Q(y)e^{\int P(y)dy}dy+C_1]\\ 其中,P(y)=\frac{-2}{y},Q(y)=-y,带入通解\\ x=e^{-\int\frac{-2}{y}dy}[\int(-y)e^{\int\frac{-2}{y}dy}dy+C_1]\\ =y^2(-\ln|y|+C),C_1,C\in R 解:以y为自变量变形dydxy2x=y,为一阶线性微分方程方程通解,x=eP(y)dy[Q(y)eP(y)dydy+C1]其中,P(y)=y2,Q(y)=y,带入通解x=ey2dy[(y)ey2dydy+C1]=y2(lny+C),C1,CR
例3 假设

(1)函数 y = f ( x ) ( 0 < x < + ∞ ) 满足条件 f ( 0 ) = 0 和 0 ≤ f ( x ) ≤ e x − 1 y=f(x)(0\lt x\lt+\infty)满足条件f(0)=0和0\le f(x)\le e^x-1 y=f(x)(0<x<+)满足条件f(0)=00f(x)ex1;

(2)平行于y轴的动直线MN与曲线 y = f ( x ) 和 y = e x − 1 y=f(x)和y=e^x-1 y=f(x)y=ex1分别相交于 p 1 和 P 2 p_1和P_2 p1P2;

(3)曲线 y = f ( x ) , 直线 M N 和 x 轴 y=f(x),直线MN和x轴 y=f(x),直线MNx围成平面图像的面积S恒等于线段 P 1 P 2 P_1P_2 P1P2的长度。

求函数 y = f ( x ) y=f(x) y=f(x)的表达式,如下图3-1所示:

在这里插入图片描述

解: ∵ S O P 1 M ≡ P 1 P 2 , 即 ∫ 0 x f ( t ) d t = e x − 1 − y 对上式求导得 , y = e x − d y d x ⇒ d y d x + y = e x ( 一阶微分方程 ) 上式通解公式 , y = e ∫ − d x [ ∫ e x e ∫ d x + C 1 ] = e − x ( 1 2 e 2 x + C ) 初值条件 y ∣ x = 0 = 0 , 带入通解, C = − 1 2 即函数表达式为, y = e x − e − x 2 解:∵S_{OP_1M}\equiv P_1P_2,即\\ \int_0^xf(t)dt=e^x-1-y\\ 对上式求导得,y=e^x-\frac{dy}{dx}\Rightarrow \frac{dy}{dx}+y=e^x(一阶微分方程)\\ 上式通解公式,y=e^{\int-dx}[\int e^xe^{\int dx}+C_1]=e^{-x}(\frac{1}{2}e^{2x}+C)\\ 初值条件y|_{x=0}=0,带入通解,C=-\frac{1}{2}\\ 即函数表达式为,y=\frac{e^x-e^{-x}}{2} 解:SOP1MP1P2,0xf(t)dt=ex1y对上式求导得,y=exdxdydxdy+y=ex(一阶微分方程)上式通解公式,y=edx[exedx+C1]=ex(21e2x+C)初值条件yx=0=0,带入通解,C=21即函数表达式为,y=2exex

2伯努利方程

方程, d y d x + P ( x ) y = Q ( x ) y n ( n ≠ 0 , 1 ) \frac{dy}{dx}+P(x)y=Q(x)y^n\quad(n\not=0,1) dxdy+P(x)y=Q(x)yn(n=0,1),叫做伯努利方程。

  • n = 0 或者 1 n=0或者1 n=0或者1时,这是线下微分方程
  • 解法如下

解:( 1 )分离非齐次 y n 除方程两端 , y − n d y d x + P ( x ) y 1 − n = Q ( x ) 变形, d ( y 1 − n ) d x + ( 1 − n ) P ( x ) y 1 − n = ( 1 − n ) Q ( x ) ( 2 ) 变量代换 令 z = y 1 − n , 带入上式, d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) ( 一阶线性微分方程) ( 3 ) 求解新方程通解,将 z = y 1 − n 带回 解:(1)分离非齐次\\ y^n除方程两端,y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x)\\ 变形,\frac{d(y^{1-n})}{dx}+(1-n)P(x)y^{1-n}=(1-n)Q(x)\\ (2) 变量代换\\ 令z=y^{1-n},带入上式,\frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x)\quad(一阶线性微分方程)\\ (3)求解新方程通解,将z=y^{1-n}带回 解:(1)分离非齐次yn除方程两端,yndxdy+P(x)y1n=Q(x)变形,dxd(y1n)+(1n)P(x)y1n=(1n)Q(x)(2)变量代换z=y1n,带入上式,dxdz+(1n)P(x)z=(1n)Q(x)(一阶线性微分方程)(3)求解新方程通解,将z=y1n带回

例4 求解 d y d x + y x = a ln ⁡ x ⋅ y 2 \frac{dy}{dx}+\frac{y}{x}=a\ln x\cdot y^2 dxdy+xy=alnxy2
解: ( 1 ) y − 2 d y d x + 1 x y − 1 = a ln ⁡ x − d y − 1 d x + 1 x y − 1 = a ln ⁡ x ( 2 ) 令 z = y − 1 , 则 d z d x − 1 x z = − a ln ⁡ x 解得, z = x [ C − a 2 ( ln ⁡ x ) 2 ] ( 3 ) z = y − 1 带回,得 y x [ C − a 2 ( ln ⁡ x ) 2 ] = 1 解:(1)y^{-2}\frac{dy}{dx}+\frac{1}{x}y^{-1}=a\ln x\\ -\frac{dy^{-1}}{dx}+\frac{1}{x}y^{-1}=a\ln x\\ (2)令z=y^{-1},则\frac{dz}{dx}-\frac{1}{x}z=-a\ln x 解得,z=x[C-\frac{a}{2}(\ln x)^2]\\ (3) z=y^{-1}带回,得yx[C-\frac{a}{2}(\ln x)^2]=1 解:(1)y2dxdy+x1y1=alnxdxdy1+x1y1=alnx(2)z=y1,dxdzx1z=alnx解得,z=x[C2a(lnx)2](3)z=y1带回,得yx[C2a(lnx)2]=1

3 简单变量替换解方程

例5 ① d y d x = 1 x + y \frac{dy}{dx}=\frac{1}{x+y} dxdy=x+y1 d y d x = e y + 3 x x 2 \frac{dy}{dx}=\frac{e^y+3x}{x^2} dxdy=x2ey+3x
解:①方法一,把 y 看做自变量 d x d y − x = y , 一阶线性微分方程 , 按照解一阶线性微分方程的方式解即可 方法二,令 u = x + y , 则 d y d x = d u d x − 1 d u d x = u + 1 u ⇒ u u + 1 d u = d x 可分离变量 解得 u − ln ⁡ ∣ u + 1 ∣ = x + c u = x + y 带回, y − ln ⁡ ∣ x + y + 1 ∣ = C ②令 u = e y , d y d x = 1 u d u d x 1 u d u d x = u + 3 x x 2 d u d x − 3 x u = 1 x 2 u 2 , 伯努利方程 解得 , e y ( C x 3 − 1 2 x ) = 1 解:①方法一,把y看做自变量\\ \frac{dx}{dy}-x=y,一阶线性微分方程,按照解一阶线性微分方程的方式解即可\\ 方法二,令u=x+y,则\frac{dy}{dx}=\frac{du}{dx}-1\\ \frac{du}{dx}=\frac{u+1}{u}\quad\Rightarrow \frac{u}{u+1}du=dx 可分离变量\\ 解得u-\ln|u+1|=x+c\\ u=x+y带回,y-\ln|x+y+1|=C\\ ② 令u=e^y,\frac{dy}{dx}=\frac{1}{u}\frac{du}{dx}\\ \frac{1}{u}\frac{du}{dx}=\frac{u+3x}{x^2}\\ \frac{du}{dx}-\frac{3}{x}u=\frac{1}{x^2}u^2 \quad ,伯努利方程\\ 解得,e^y(\frac{C}{x^3}-\frac{1}{2x})=1 解:方法一,把y看做自变量dydxx=y,一阶线性微分方程,按照解一阶线性微分方程的方式解即可方法二,令u=x+y,dxdy=dxdu1dxdu=uu+1u+1udu=dx可分离变量解得ulnu+1∣=x+cu=x+y带回,ylnx+y+1∣=Cu=ey,dxdy=u1dxduu1dxdu=x2u+3xdxdux3u=x21u2,伯努利方程解得,ey(x3C2x1)=1

结语

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.p314-320.

[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p45.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值