0805曲面及其方程-向量代数与空间解析几何

1 曲面研究的基本问题

曲面研究的两个基本问题:

  1. 已知一曲面作为点的几何轨迹时,建立这曲面的方程;
  2. 已知x,y和z直接的一个方程时,研究这方程所表示的曲面的形状。

例1 建立球心在点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)、半径为R的球面的方程。
设点 M ( x , y , z ) 是球面上的任一点,则 ∣ M 0 M ⃗ ∣ = R ∵ ∣ M 0 M ⃗ ∣ = ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ∴ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 即 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 设点M(x,y,z)是球面上的任一点,则\\ |\vec{M_0M}|=R\\ \because |\vec{M_0M}|=\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}\\ \therefore \sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}=R\\ 即(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2 设点M(x,y,z)是球面上的任一点,则M0M =RM0M =(xx0)2+(yy0)2+(zz0)2 (xx0)2+(yy0)2+(zz0)2 =R(xx0)2+(yy0)2+(zz0)2=R2
例2 方程 x 2 + y 2 + z 2 − 2 x + 4 y = 0 x^2+y^2+z^2-2x+4y=0 x2+y2+z22x+4y=0表示怎么样的曲面?
配方,原方程变为: ( x − 1 ) 2 + ( y + 2 ) 2 + z 2 = 5 则该方程表示球心为 ( 1 , − 2 , 0 ) ,半径为 5 的球 配方,原方程变为:\\ (x-1)^2+(y+2)^2+z^2=5\\ 则该方程表示球心为(1,-2,0),半径为\sqrt5的球 配方,原方程变为:(x1)2+y+2)2+z2=5则该方程表示球心为(1,2,0),半径为5 的球
设有三元二次方程

A x 2 + A y 2 + A z 2 + D x + E y + F z + G = 0 Ax^2+Ay^2+Az^2+Dx+Ey+Fz+G=0 Ax2+Ay2+Az2+Dx+Ey+Fz+G=0

特点:

  1. 缺少 x y , y z , z x 各项 xy,yz,zx各项 xy,yz,zx各项
  2. 平方项系数相同。

则它的图形就是一个球面。

2 旋转曲面

平面曲线C绕其同平面内一直线L旋转一周而成的曲面S称为旋转曲面;选择曲线和定直线依次叫做旋转曲面的母线和轴。

在这里插入图片描述

如上图所示,设yOz坐标面上有一已知曲线C,它的方程 f ( y , z ) = 0 f(y,z)=0 f(y,z)=0,则C绕z轴的旋转曲面方程?
设点 M 1 ( 0 , y 1 , z 1 ) 为曲线 C 上的任一点,则有 f ( y 1 , z 1 ) = 0 ( 2 − 1 ) 曲线绕 z 轴旋转, M 1 点绕 z 轴得到另外一点 M ( x , y , z ) , 有 z = z 1 点 M 到 z 轴的距离: d = x 2 + y 2 = ∣ y 1 ∣ 导入( 2 − 1 )式有 f ( ± x 2 + y 2 , z ) = 0 设点M_1(0,y_1,z_1)为曲线C上的任一点,则有f(y_1,z_1)=0\quad(2-1)\\ 曲线绕z轴旋转,M_1点绕z轴得到另外一点M(x,y,z),有\\ z=z_1\\ 点M到z轴的距离:d=\sqrt{x^2+y^2}=|y_1|\\ 导入(2-1)式有\\ f(\pm\sqrt{x^2+y^2},z)=0 设点M1(0,y1,z1)为曲线C上的任一点,则有f(y1,z1)=0(21)曲线绕z轴旋转,M1点绕z轴得到另外一点M(x,y,z),z=z1Mz轴的距离:d=x2+y2 =y1导入(21)式有f(±x2+y2 ,z)=0

总结:
母线 : f ( y , z ) = 0 { 绕 z 轴旋转, S : f ( ± x 2 + y 2 , z ) = 0 绕 y 轴旋转 , s : f ( y , ± x 2 + z 2 ) = 0 母线 : f ( z , x ) = 0 { 绕 z 轴旋转, S : f ( z , ± x 2 + y 2 ) = 0 绕 x 轴旋转 , s : f ( ± y 2 + z 2 , x ) = 0 母线 : f ( x , y ) = 0 { 绕 x 轴旋转, S : f ( x , ± y 2 + z 2 ) = 0 绕 y 轴旋转 , s : f ( ± x 2 + z 2 , y ) = 0 母线:f(y,z)=0 \begin{cases} 绕z轴旋转,S:f(\pm\sqrt{x^2+y^2},z)=0\\ 绕y轴旋转,s:f(y,\pm\sqrt{x^2+z^2})=0 \end{cases}\\ 母线:f(z,x)=0 \begin{cases} 绕z轴旋转,S:f(z, \pm\sqrt{x^2+y^2})=0\\ 绕x轴旋转,s:f(\pm\sqrt{y^2+z^2}, x)=0 \end{cases}\\ 母线:f(x,y)=0 \begin{cases} 绕x轴旋转,S:f(x, \pm\sqrt{y^2+z^2})=0\\ 绕y轴旋转,s:f(\pm\sqrt{x^2+z^2},y)=0 \end{cases}\\ 母线:f(y,z)=0{z轴旋转,S:f(±x2+y2 ,z)=0y轴旋转,s:f(y,±x2+z2 )=0母线:f(z,x)=0{z轴旋转,S:f(z,±x2+y2 )=0x轴旋转,s:f(±y2+z2 ,x)=0母线:f(x,y)=0{x轴旋转,S:f(x,±y2+z2 )=0y轴旋转,s:f(±x2+z2 ,y)=0

例3 直线L绕另外一条相交的直线旋转一周,所得旋转曲面叫做圆锥面。两直线的交点叫做圆锥面的顶点,两直线的夹角 α ( 0 < α < π 2 ) \alpha(0\lt\alpha\lt\frac{\pi}{2}) α(0<α<2π)叫做圆锥面的半顶角。试建立顶点在坐标原点O,旋转轴为z轴,半顶角为 α \alpha α的圆锥面的方程,如下图2-1所示:

在这里插入图片描述

解:在 y o z 平面上,执行 L 的方程: z = y cot ⁡ α ( 2 − 1 ) 旋转轴为 z 轴, ( 2 − 1 ) 方程中 y 改为 ± x 2 + y 2 , 得圆锥面方程: z = ± x 2 + y 2 cot ⁡ α 或 z 2 = a 2 ( x 2 + y 2 ) ( a = cot ⁡ α ) 解:在yoz平面上,执行L的方程:z=y\cot\alpha\quad (2-1)\\ 旋转轴为z轴,(2-1)方程中y改为\pm\sqrt{x^2+y^2},得圆锥面方程:\\ z=\pm\sqrt{x^2+y^2}\cot\alpha或z^2=a^2(x^2+y^2)(a=\cot\alpha) 解:在yoz平面上,执行L的方程:z=ycotα(21)旋转轴为z轴,(21)方程中y改为±x2+y2 ,得圆锥面方程:z=±x2+y2 cotαz2=a2(x2+y2)(a=cotα)

例4 求yOz平面上曲线 z = a y 2 ( a > 0 ) z=ay^2(a\gt0) z=ay2(a>0)绕z轴旋转一周所得旋转曲面的方程。
解:旋转曲面方法 , z = a ( x 2 + y 2 ) 解:旋转曲面方法,z=a(x^2+y^2) 解:旋转曲面方法,z=a(x2+y2)

例5 求xOz平面上双曲线 x 2 a 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{z^2}{c^2}=1 a2x2c2z2=1,分别绕z轴,x轴旋转一周所生成旋转曲面的方程,如下图所示:

在这里插入图片描述

解:绕 z 纵轴旋转所形成的旋转曲面叫做旋转单叶双曲面,方程为 x 2 + y 2 a 2 − z 2 c 2 = 1 绕 x 轴旋转所形成的旋转曲面叫做旋转双叶双曲面,方程为 x 2 a 2 − y 2 + z 2 c 2 = 1 解:绕z纵轴旋转所形成的旋转曲面叫做旋转单叶双曲面,方程为\\ \frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1\\ 绕x轴旋转所形成的旋转曲面叫做旋转双叶双曲面,方程为\\ \frac{x^2}{a^2}-\frac{y^2+z^2}{c^2}=1 解:绕z纵轴旋转所形成的旋转曲面叫做旋转单叶双曲面,方程为a2x2+y2c2z2=1x轴旋转所形成的旋转曲面叫做旋转双叶双曲面,方程为a2x2c2y2+z2=1

3 柱面

一般地,直线L沿定曲线C平行移动形成的轨迹叫做柱面,定曲线叫做柱面的准线,动直线叫做柱面的母线。

  • 分类
    f ( x , y ) = 0 : { 准线为 x O y 平面上的曲线 f ( x , y ) = 0 母线平行于 z 轴 f ( y , z ) = 0 : { 准线为 y O z 平面上的曲线 f ( y , z ) = 0 母线平行于 x 轴 f ( z , x ) = 0 : { 准线为 z O x 平面上的曲线 f ( z , x ) = 0 母线平行于 y 轴 f(x,y)=0: \begin{cases} 准线为xOy平面上的曲线f(x,y)=0\\ 母线平行于z轴 \end{cases}\\ f(y,z)=0: \begin{cases} 准线为yOz平面上的曲线f(y,z)=0\\ 母线平行于x轴 \end{cases}\\ f(z,x)=0: \begin{cases} 准线为zOx平面上的曲线f(z,x)=0\\ 母线平行于y轴 \end{cases}\\ f(x,y)=0:{准线为xOy平面上的曲线f(x,y)=0母线平行于zf(y,z)=0:{准线为yOz平面上的曲线f(y,z)=0母线平行于xf(z,x)=0:{准线为zOx平面上的曲线f(z,x)=0母线平行于y

例6 ①方程 x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2在空间直角坐标系中表示圆柱面,它的母线平行于z轴,它的准线是xOy平面上的圆 x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2,该柱面叫做圆柱面。

在这里插入图片描述

②方程 y 2 = 2 x y^2=2x y2=2x
解:准线: x O y 平面上曲线 y 2 = 2 x 母线平行于 z 轴 , 该柱面叫做抛物柱面 如下图所示: 解:准线:xOy平面上曲线y^2=2x\\ 母线平行于z轴,该柱面叫做抛物柱面\\ 如下图所示: 解:准线:xOy平面上曲线y2=2x母线平行于z,该柱面叫做抛物柱面如下图所示:
在这里插入图片描述

③方程 x − z = 0 x-z=0 xz=0
解:准线 z O x 平面上曲线 x − z = 0 母线平行于 y 轴,该方程表示过 y 轴的平面 解:准线zOx平面上曲线x-z=0\\ 母线平行于y轴,该方程表示过y轴的平面 解:准线zOx平面上曲线xz=0母线平行于y轴,该方程表示过y轴的平面

4 二次曲面

4.1 定义

三元二次方程F(x,y,z)=0所表示的曲面称为二次曲面,把平面称为一次曲面。

4.2 研究方法

研究曲面的方法:

  • 截痕法

    以平面$z=t(或x=t,y=t)去截曲面得截痕,研究截痕随t变化规律,从而了解曲面的形状。

例1 方程 z = x 2 + y 2 z=x^2+y^2 z=x2+y2
令 z = t , 截次曲面,当 t = 0 时,的一点 ( 0 , 0 , 0 ) ; 当 t ≠ 0 时,得平面上 z = t 上的圆 x 2 + y 2 = t ( t > 0 ) 当 t 从 0 趋向于 + ∞ 时,圆半径趋向于无穷大 此方程表示位于 z 轴上方的圆锥面 令z=t,截次曲面,当t=0时,的一点(0,0,0);当t\not=0时,得平面上z=t上的圆x^2+y^2=t(t\gt0)\\ 当t从0趋向于+\infty时,圆半径趋向于无穷大\\ 此方程表示位于z轴上方的圆锥面 z=t,截次曲面,当t=0时,的一点(0,0,0);t=0时,得平面上z=t上的圆x2+y2=t(t>0)t0趋向于+时,圆半径趋向于无穷大此方程表示位于z轴上方的圆锥面

  • 伸缩变形法

①平面情形

在这里插入图片描述

曲线C:F(x,y)=0,沿y轴伸缩 λ \lambda λ倍,得曲线 C ′ C^{'} C
C ′ 方程 : F ( x , y λ ) = 0 C^{'}方程:F(x,\frac{y}{\lambda})=0 C方程:F(x,λy)=0
②空间情形

空间曲面方程S:F(x,y,z)沿z轴伸缩 λ \lambda λ倍,则 S ′ : F ( x , y , z λ ) = 0 S^{'}:F(x,y,\frac{z}{\lambda})=0 S:F(x,y,λz)=0;空间曲面方程S:F(x,y,z)沿x轴伸缩 λ \lambda λ倍,则 S ′ : F ( x λ , y , z ) = 0 S^{'}:F(\frac{x}{\lambda},y,z)=0 S:F(λx,y,z)=0;空间曲面方程S:F(x,y,z)沿y轴伸缩 λ \lambda λ倍,则 S ′ : F ( x , y λ , z ) = 0 S^{'}:F(x,\frac{y}{\lambda},z)=0 S:F(x,λy,z)=0;

4.3 九种二次曲面

(1)椭圆锥面: x 2 a 2 + y 2 b 2 = z 2 \frac{x^2}{a^2}+\frac{y^2}{b^2}=z^2 a2x2+b2y2=z2
圆锥面 z 2 = x 2 + y 2 沿 x 轴拉伸 a 倍: z 2 = x 2 a 2 + y 2 在沿 y 轴拉伸 b 倍: z 2 = x 2 a 2 + y 2 b 2 圆锥面z^2=x^2+y^2\\ 沿x轴拉伸a倍:z^2=\frac{x^2}{a^2}+y^2\\ 在沿y轴拉伸b倍:z^2=\frac{x^2}{a^2}+\frac{y^2}{b^2} 圆锥面z2=x2+y2沿x轴拉伸a倍:z2=a2x2+y2在沿y轴拉伸b倍:z2=a2x2+b2y2
在这里插入图片描述

(2)椭球面: x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1

在这里插入图片描述

(3)单页双曲面: x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2c2z2=1

在这里插入图片描述

(4)双叶双曲面: x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2b2y2c2z2=1

在这里插入图片描述

(5)椭圆抛物面: x 2 a 2 + y 2 b 2 = z \frac{x^2}{a^2}+\frac{y^2}{b^2}=z a2x2+b2y2=z

在这里插入图片描述

(6)双曲抛物面: x 2 a 2 − y 2 b 2 = z \frac{x^2}{a^2}-\frac{y^2}{b^2}=z a2x2b2y2=z

在这里插入图片描述

(7)椭圆柱面: x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1

在这里插入图片描述

(8)双曲柱面: x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2b2y2=1

在这里插入图片描述

(9)抛物柱面: x 2 = a y x^2=ay x2=ay

在这里插入图片描述

结语

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 下册[M].北京:高等教育出版社,2014.7.p37-45.

[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p55.

[3]曲面研究的两个基本问题、旋转曲面、柱面、二次曲面[CP/OL].

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值