tensorflow学习之识别单张图片的实现(python手写数字)

本文介绍如何利用TensorFlow训练模型识别手写数字,通过MNIST数据集建立模型并保存,然后测试模型对指定图片的识别能力。在测试阶段,将图片放入指定文件夹,模型能够识别并输出结果。但在尝试用CIFAR10数据集时遇到了输入数据顺序的问题,目前尚未解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设我们已经安装好了tensorflow。

一般在安装好tensorflow后,都会跑它的demo,而最常见的demo就是手写数字识别的demo,也就是mnist数据集。

然而我们仅仅是跑了它的demo而已,可能很多人会有和我一样的想法,如果拿来一张数字图片,如何应用我们训练的网络模型来识别出来,下面我们就以mnist的demo来实现它。

1.训练模型

首先我们要训练好模型,并且把模型model.ckpt保存到指定文件夹

saver = tf.train.Saver() 

saver.save(sess, "model_data/model.ckpt")

将以上两行代码加入到训练的代码中,训练完成后保存模型即可,如果这部分有问题,你可以百度查阅资料,tensorflow怎么保存训练模型,在这里我们就不罗嗦了。

2.测试模型

我们训练好模型后,将它保存在了model_data文件夹中,你会发现文件夹中出现了4个文件


然后,我们就可以对这个模型进行测试了,将待检测图片放在images文件夹下,执行

# -*- coding:utf-8 -*-  
import cv2
import tensorflow as tf
import numpy as np
from sys import path
path.append('../..')
from common import extract_mnist

#初始化单个卷积核上的参数
def weight_variable(shape):
	initial = tf.truncated_normal(shape, stddev=0
评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值