洛谷P1314 聪明的质监员

题目描述

小T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi 。检验矿产的流程是:

1 、给定m 个区间[Li,Ri];

2 、选出一个参数 W;

3 、对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi:

这批矿产的检验结果Y 为各个区间的检验值之和。即:Y1+Y2...+Ym

若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产。小T

不想费时间去检验另一批矿产,所以他想通过调整参数W 的值,让检验结果尽可能的靠近

标准值S,即使得S-Y 的绝对值最小。请你帮忙求出这个最小值。

输入输出格式

输入格式:

输入文件qc.in 。

第一行包含三个整数n,m,S,分别表示矿石的个数、区间的个数和标准值。

接下来的n 行,每行2个整数,中间用空格隔开,第i+1 行表示 i 号矿石的重量 wi 和价值vi。

接下来的m 行,表示区间,每行2 个整数,中间用空格隔开,第i+n+1 行表示区间[Li,Ri]的两个端点Li 和Ri。注意:不同区间可能重合或相互重叠。

输出格式:

输出文件名为qc.out。

输出只有一行,包含一个整数,表示所求的最小值。

输入输出样例

输入样例#1:
5 3 15 
1 5 
2 5 
3 5 
4 5 
5 5 
1 5 
2 4 
3 3 
输出样例#1:
10

说明

【输入输出样例说明】

当W 选4 的时候,三个区间上检验值分别为 20、5 、0 ,这批矿产的检验结果为 25,此

时与标准值S 相差最小为10。

【数据范围】

对于10% 的数据,有 1 ≤n ,m≤10;

对于30% 的数据,有 1 ≤n ,m≤500 ;

对于50% 的数据,有 1 ≤n ,m≤5,000;

对于70% 的数据,有 1 ≤n ,m≤10,000 ;

对于100%的数据,有 1 ≤n ,m≤200,000,0 < wi, vi≤10^6,0 < S≤10^12,1 ≤Li ≤Ri ≤n 。

看到数据范围显然是二分答案,还有前缀和优化

根据检验的公式可知,当w越大时检验值越小,反之当w变大时检验值变大,(简单的连我都想出来了qwq)

code

#include<bits/stdc++.h>
#define int long long
#define N 200010
using namespace std;
namespace program{
	int n,m,s,ll=20021109,rr=0;
	int w[N],val[N],l[N],r[N];
	int fnum[N],fval[N];
	int ans=999999999999;
	inline int check(int x){
		memset(fnum,0,sizeof fnum);
		memset(fval,0,sizeof fval);
		for(int i=1;i<=n;i++){
			if(w[i]>=x)
				fnum[i]=fnum[i-1]+1,fval[i]=fval[i-1]+val[i];
			else
				fnum[i]=fnum[i-1],fval[i]=fval[i-1];
		}
		int res=0;
		for(int i=1;i<=m;i++){
			res+=(fnum[r[i]]-fnum[l[i]-1])*(fval[r[i]]-fval[l[i]-1]);
		}
		return res;
	}
	inline void work(){
		scanf("%lld%lld%lld",&n,&m,&s);
		for(int i=1;i<=n;i++)
			scanf("%lld%lld",&w[i],&val[i]),ll=min(ll,w[i]),rr=max(rr,w[i]);
		for(int i=1;i<=m;i++)
			scanf("%lld%lld",&l[i],&r[i]);
		ll-=2;rr+=2;//边界开大些,防止出锅
		while(ll<=rr){
			int mid=(ll+rr)>>1;
			int sum=check(mid);
			if(sum>s)
				ll=mid+1;
			else
				rr=mid-1;
			ans=min(ans,abs(s-sum));
		}printf("%lld\n",ans);
		return;
	}
}
signed main(){
	program::work();
	return 0;
}

阅读更多
换一批

没有更多推荐了,返回首页