洛谷P1314 [NOIP2011 提高组] 聪明的质监员 题解
题目链接:P1314 [NOIP2011 提高组] 聪明的质监员
题意:
小T
是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 n n n 个矿石,从 1 1 1 到 n n n 逐一编号,每个矿石都有自己的重量 w i w_i wi 以及价值 v i v_i vi 。检验矿产的流程是:1 、给定 m m m 个区间 [ l i , r i ] [l_i,r_i] [li,ri];
2 、选出一个参数 W W W;
3 、对于一个区间 [ l i , r i ] [l_i,r_i] [li,ri],计算矿石在这个区间上的检验值 y i y_i yi:
y i = ∑ j = l i r i [ w j ≥ W ] × ∑ j = l i r i [ w j ≥ W ] v j y_i=\sum\limits_{j=l_i}^{r_i}[w_j \ge W] \times \sum\limits_{j=l_i}^{r_i}[w_j \ge W]v_j yi=j=li∑ri[wj≥W]×j=li∑ri[wj≥W]vj
其中 j j j 为矿石编号。这批矿产的检验结果 y y y 为各个区间的检验值之和。即: ∑ i = 1 m y i \sum\limits_{i=1}^m y_i i=1∑myi
若这批矿产的检验结果与所给标准值 s s s 相差太多,就需要再去检验另一批矿产。
小T
不想费时间去检验另一批矿产,所以他想通过调整参数 W W W 的值,让检验结果尽可能的靠近标准值 s s s,即使得 ∣ s − y ∣ |s-y| ∣s−y∣ 最小。请你帮忙求出这个最小值。对于 100 % 100\% 100% 的数据,有 1 ≤ n , m ≤ 200 , 000 1 ≤n ,m≤200,000 1≤n,m≤200,000, 0 < w i , v i ≤ 1 0 6 0 < w_i,v_i≤10^6 0<wi,vi≤106, 0 < s ≤ 1 0 12 0 < s≤10^{12} 0<s≤1012, 1 ≤ l i ≤ r i ≤ n 1 ≤l_i ≤r_i ≤n 1≤li≤ri≤n 。
注意到其实我们就是要算这个式子
∣
s
−
∑
i
=
1
m
∑
j
=
l
i
r
i
[
w
j
≥
W
]
∑
j
=
l
i
r
i
[
w
j
≥
W
]
v
j
∣
min
\left|s-\sum_{i=1}^{m}\sum_{j=l_i}^{r_i}[w_j \ge W]\sum_{j=l_i}^{r_i}[w_j \ge W]v_j\right|_{\min}
∣∣∣∣∣∣s−i=1∑mj=li∑ri[wj≥W]j=li∑ri[wj≥W]vj∣∣∣∣∣∣min
∑
j
=
l
i
r
i
[
w
j
≥
W
]
\sum_{j=l_i}^{r_i}[w_j \ge W]
∑j=liri[wj≥W] 是可以前缀和优化的
但是显然我们要知道 W W W 才能计算这个柿子
考虑二分一个 W ∈ [ 0 , w max ] W \in [0,w_{\max}] W∈[0,wmax]
对于绝对值的二分,我们直接拆掉绝对值
-
当 s − y < 0 s-y<0 s−y<0 时, y y y 减小, W W W 增大。
-
当 s − y > 0 s-y>0 s−y>0 时, y y y 增大, W W W 减小。
-
当 s − y = 0 s-y=0 s−y=0 时 ,直接退出即可。
答案只要在二分的过程中卑微的记录一下就好了
时间复杂度 O ( n log W ) O(n \log W) O(nlogW)
代码:
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(2e5+15)
int n,m,s,l,r,mid;
int w[N],v[N],le[N],ri[N],res=INF,p[N],q[N];
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
// freopen("check.in","r",stdin);
// freopen("check.out","w",stdout);
cin >> n >> m >> s;
for(int i=1; i<=n; i++)
{
cin >> w[i] >> v[i];
r=max(r,w[i]);
}
for(int i=1; i<=m; i++)
cin >> le[i] >> ri[i];
while(l<r)
{
int mid=(l+r+1)>>1;
for(int i=1; i<=n; i++)
{
if(w[i]>mid)
q[i]=q[i-1]+1,p[i]=p[i-1]+v[i];
else
q[i]=q[i-1],p[i]=p[i-1];
}
int x=0;
for(int i=1; i<=m; i++)
x+=(q[ri[i]]-q[le[i]-1])*(p[ri[i]]-p[le[i]-1]);
int t=s-x;
if(t<0)l=mid;
else if(!t)return cout << 0,0;
else r=mid-1;
res=min(res,abs(t));
}
cout << res << '\n';
return 0;
}
转载请说明出处