洛谷P1314 [NOIP2011 提高组] 聪明的质监员 题解

本文介绍了洛谷P1314题目的解决方案,该题目涉及矿石检验和区间求和优化。通过前缀和优化和二分查找,找到使检验结果最接近标准值的参数W,从而最小化绝对误差。文章提供了详细的解题思路和代码实现,适合对算法和数据结构感兴趣的读者深入理解。
摘要由CSDN通过智能技术生成

洛谷P1314 [NOIP2011 提高组] 聪明的质监员 题解

题目链接:P1314 [NOIP2011 提高组] 聪明的质监员

题意

小T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 n n n 个矿石,从 1 1 1 n n n 逐一编号,每个矿石都有自己的重量 w i w_i wi 以及价值 v i v_i vi 。检验矿产的流程是:

1 、给定 m m m 个区间 [ l i , r i ] [l_i,r_i] [li,ri]

2 、选出一个参数 W W W

3 、对于一个区间 [ l i , r i ] [l_i,r_i] [li,ri],计算矿石在这个区间上的检验值 y i y_i yi
y i = ∑ j = l i r i [ w j ≥ W ] × ∑ j = l i r i [ w j ≥ W ] v j y_i=\sum\limits_{j=l_i}^{r_i}[w_j \ge W] \times \sum\limits_{j=l_i}^{r_i}[w_j \ge W]v_j yi=j=liri[wjW]×j=liri[wjW]vj
其中 j j j 为矿石编号。

这批矿产的检验结果 y y y 为各个区间的检验值之和。即: ∑ i = 1 m y i \sum\limits_{i=1}^m y_i i=1myi

若这批矿产的检验结果与所给标准值 s s s 相差太多,就需要再去检验另一批矿产。小T 不想费时间去检验另一批矿产,所以他想通过调整参数 W W W 的值,让检验结果尽可能的靠近标准值 s s s,即使得 ∣ s − y ∣ |s-y| sy 最小。请你帮忙求出这个最小值。

对于 100 % 100\% 100% 的数据,有 1 ≤ n , m ≤ 200 , 000 1 ≤n ,m≤200,000 1n,m200,000 0 < w i , v i ≤ 1 0 6 0 < w_i,v_i≤10^6 0<wi,vi106 0 < s ≤ 1 0 12 0 < s≤10^{12} 0<s1012 1 ≤ l i ≤ r i ≤ n 1 ≤l_i ≤r_i ≤n 1lirin

注意到其实我们就是要算这个式子
∣ s − ∑ i = 1 m ∑ j = l i r i [ w j ≥ W ] ∑ j = l i r i [ w j ≥ W ] v j ∣ min ⁡ \left|s-\sum_{i=1}^{m}\sum_{j=l_i}^{r_i}[w_j \ge W]\sum_{j=l_i}^{r_i}[w_j \ge W]v_j\right|_{\min} si=1mj=liri[wjW]j=liri[wjW]vjmin
∑ j = l i r i [ w j ≥ W ] \sum_{j=l_i}^{r_i}[w_j \ge W] j=liri[wjW] 是可以前缀和优化的

但是显然我们要知道 W W W 才能计算这个柿子

考虑二分一个 W ∈ [ 0 , w max ⁡ ] W \in [0,w_{\max}] W[0,wmax]

对于绝对值的二分,我们直接拆掉绝对值

  • s − y < 0 s-y<0 sy<0 时, y y y 减小, W W W 增大。

  • s − y > 0 s-y>0 sy>0 时, y y y 增大, W W W 减小。

  • s − y = 0 s-y=0 sy=0 时 ,直接退出即可。

答案只要在二分的过程中卑微的记录一下就好了

时间复杂度 O ( n log ⁡ W ) O(n \log W) O(nlogW)

代码:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(2e5+15)

int n,m,s,l,r,mid;
int w[N],v[N],le[N],ri[N],res=INF,p[N],q[N];
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    cin >> n >> m >> s;
    for(int i=1; i<=n; i++)
    {
        cin >> w[i] >> v[i];
        r=max(r,w[i]);
    }
    for(int i=1; i<=m; i++)
        cin >> le[i] >> ri[i];
    while(l<r)
    {
        int mid=(l+r+1)>>1;
        for(int i=1; i<=n; i++)
        {
            if(w[i]>mid)
                q[i]=q[i-1]+1,p[i]=p[i-1]+v[i];
            else 
                q[i]=q[i-1],p[i]=p[i-1];
        }
        int x=0;
        for(int i=1; i<=m; i++)
            x+=(q[ri[i]]-q[le[i]-1])*(p[ri[i]]-p[le[i]-1]);
        int t=s-x;
        if(t<0)l=mid;
        else if(!t)return cout << 0,0;
        else r=mid-1;
        res=min(res,abs(t));
    }
    cout << res << '\n';
    return 0;
}

转载请说明出处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值