P2382 化学分子式

题目背景

元首和元老正在共同努力学习化学,他们想让电脑帮助他模拟分子式减轻负担。请你帮他设计一个程序。

题目描述

你的任务是编写一个能处理在虚拟的化学里分子式的程序,在真正的化学里,每个分子式描述分子包括一个或者多个原子,但是,它可能没有真正的化学药品。

下面是原子符号和分子式的定义:

分子中一个原子由一个原子符号表示,原子符号由单个大写字母或者一个大写字母和一个小写字母组成。例如:H和He都是原子符号。

一个分子式是一个原子符号的非空序列,例如,HHHeHHHe是一个分子式,表示一个分子包括4个H和2个He。

为了方便起见,一段相同的式子,如x….x(n个X,2<=n<=99),可以被缩写为(X)n。如果X是一个原子符号,那么括号可以省略。例如,HHHeHHHe也可以写作H2HeH2He,(HHHe)2,(H2He)2,((H)2He)2。

分子式的定义可以用一种规范的语言描述。简而言之,分子式的语法描述如下:

分子--原子|原子数量|(分子)数字|分子 分子原子—>大写字母|大写字母 小写字母

数字-2|3|4|5|……|99|大写字母-A|B|……|Z|小写字母-a|b|c|……|z|在我们这个虚拟的化学里的每一个原子都有自己的原子质量,给你原子的质量,你的程序必须输出一个用分子式表示的分子质量。分子的质量定义为所有包括的原子的质量之和。例如,假设H和He的原子质量为1和4,那么(H2He)2的分子量为12。

输入输出格式

输入格式:

输入格式:

输入由两部分组成。第一部分是原子表,由一些行组成,每行包括一个原子符号、一个或者多个空格,以及该原子的原子质量(<=1000)。没有两行包含相同的原子符号。

第一部分最后仅包括一行字符串“END_OF_FIRST_PART”。

第二部分是一些行的序列。每行是一个分子式,不多于80个字符,而且不包括空格。一个分子最多包括10^5个原子,一些分子中的原子可能没有在原子表中出现。

最后一行仅一个零,表示输入结束。

输出格式:

输出格式:

输出时一些行的序列,和输入文件的第二部分行数相同。如果分子中的每一个原子都在原子表中出现,输出一个整数,并表示分子质量。否者输出UNKNOWN。不要输出多余的字符。

输入输出样例

输入样例#1:
H 1
He 4
C 12
O 16
F 19
Ne 20
Cu 64
Cc 333
END_OF_FIRST_PART
H2C
(MgF)2As
Cu(OH)2
H((CO)2F)99
0
输出样例#1:
14
UNKNOWN
98
7426

字符串模拟不解释

#include<bits/stdc++.h>
#define N 100010
using namespace std;
namespace program{
	int Stack[N],limit[N],yz[N],x;
	string s;
	bool flag;
	inline void work(){
		while(cin>>s){
			if(s=="END_OF_FIRST_PART")
				break;
			cin>>x;
			if(islower(s[1]))
				yz[(s[0]-'A')+(s[1]-'a'+1)*26]=x;
			else
				yz[(s[0]-'A')]=x;
		}
		while(cin>>s){
			if(s=="0")
				break;
			int top=0,cnt=0;
			flag=true;
			for(int i=0;i<s.size();i++){
				if(isupper(s[i])){
					top+=1;
					if(islower(s[i+1])){
						Stack[top]=yz[(s[i]-'A')+(s[i+1]-'a'+1)*26];
						i+=1;
					}else
						Stack[top]=yz[(s[i]-'A')];
					if(Stack[top]==0){
						flag=false;
						break;
					}
				}else if(isdigit(s[i])){
					int num=0;
					while(isdigit(s[i])){
						num=num*10+(s[i]-'0');
						i+=1;
					}i-=1;
					Stack[top]*=num;
				}else if(s[i]=='('){
					cnt+=1;
					limit[cnt]=top;
				}else if(s[i]==')'){
					if(limit[cnt]+1>top){
						cnt-=1;
						continue;
					}
					int sum=0;
					for(int j=limit[cnt]+1;j<=top;j++)
						sum+=Stack[j];
					top=limit[cnt]+1;
					Stack[top]=sum;
					cnt-=1;
				}
			}
			int res=0;
			for(int i=top;i>=1;i--)
				res+=Stack[i];
			if(flag)
				cout<<res<<'\n';
			else
				puts("UNKNOWN");
		}
	}
}
int main(){
	program::work();
	return 0;
}

阅读更多
换一批

没有更多推荐了,返回首页