使用影刀RPA拆分excel数据

  1. 导入Excel文件
    使用 “打开/新建Excel” 模块来打开要处理的Excel文件在这里插入图片描述
  2. 读取Excel数据
    用 “读取Excel内容” 模块,读取Excel文件中要用来拆分的列保存为列表并去重
    在这里插入图片描述
  3. 处理数据
    使用 “ForEach列表循环” 模块来遍历列表中的值。
    在这里插入图片描述
  4. 拆分数据
    在 循环内,使用“筛选模块”筛选当前循环值,然后读取筛选出的内容,最后新建一个Excel并写入筛选数据。
    在这里插入图片描述
  5. 保存和关闭
    在循环玩所有列表中的值后,关闭原待拆分文件,不保存–因为是在新文件中保存数据,不必修改原文件
    在这里插入图片描述

以上便是应用的主体结构,其中可以利用其它指令优化程序,达到更加好的移植性和更快的处理速度。

### 影刀RPA 数据采集教程 #### 准备工作 为了成功实施数据采集项目,需掌握一些基础技能和工具。具体来说,熟悉网页元素的操作流程、条件判断与循环结构的应用、Excel文件的读写操作以及列表和字符串处理技术[^4]。 #### 创建新任务并配置浏览器环境 启动影刀RPA软件后,在新建的任务中设置好要使用的浏览器类型(如Chrome),确保能够正常访问目标网站。此过程涉及打开特定网址,并可能需要登录账户或接受Cookies等初始化动作[^2]。 #### 定位页面中的关键元素 通过分析待抓取网页的内容布局,找到用于定位所需信息的关键HTML标签或属性值。利用影刀内置的选择器功能来精确定位这些元素位置,从而为后续的数据提取奠定基础[^3]。 #### 循环遍历多页或多条记录 当面对分页显示的结果集或是多个独立的商品详情页时,编写逻辑控制语句使得程序能自动翻阅各页码或将光标移动到下一个目标项上继续执行相同的操作序列直至完成全部项目的扫描。 #### 提取感兴趣的信息片段 针对已锁定的目标区域内的具体内容——例如药品名称、描述文字或其他特征参数——运用正则表达式匹配或者XPath路径解析等方式将其准确无误地截取出并存储起来等待进一步加工处理。 #### 去重清洗原始收集所得资料 由于网络传输过程中可能出现异常情况造成部分冗余副本混入最终成果之中;因此有必要采取措施去除重复项以提高数据质量。一种常见做法是在导入数据库之前先对临时缓存区里的所有条目按照唯一标识符进行筛选过滤。 #### 将整理好的结果导出至外部介质 最后一步就是把经过上述一系列步骤精心挑选出来的有效情报汇总成易于分享的形式,比如CSV格式文档或者是直接填充进预先设定模板下的电子表格里以便于后期统计分析使用。 ```python import pandas as pd data = { '药品名称': ['阿司匹林', '布洛芬'], '参考价格(元)': [5.9, 8.5], } df = pd.DataFrame(data) # 导出 Excel 文件 df.to_excel('medicine_data.xlsx', index=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值