一个数是否是2的幂次方,比较常用的是递归和移位运算进行判断。递归算法的思想很简单,就是不断的模上2去判断。
如果一个数是2的幂,那么它的二进制表示中就只有一位1,例如:10000,1000,100等等。所以如果对数字1进行移位操作,总会在移到某个位的时候和这个数相等。这就是移位判断的思想。
下面给出实现的代码,在实现中,还采用了第三种方式,因为二进制表示的2的幂次方数中只有一个1,后面跟的是n个0; 因此问题可以转化为判断1后面是否跟了n个0。如果将这个数减去1后会发现,仅有的那个1会变为0,而原来的那n个0会变为1;因此将原来的数与上(&)减去1后的数字,结果为零。
(num & num - 1) == 0
递归查找2000000以内2的幂次方的数字,实际执行100w次循环,时间是47ms;
移位运算查找2000000以内,实际执行100w次循环,时间是31ms;
而第三种位与运算查找2000000以内的方法,执行100w次循环,需要的时间仅仅是15ms。
如果一个数是2的幂,那么它的二进制表示中就只有一位1,例如:10000,1000,100等等。所以如果对数字1进行移位操作,总会在移到某个位的时候和这个数相等。这就是移位判断的思想。
下面给出实现的代码,在实现中,还采用了第三种方式,因为二进制表示的2的幂次方数中只有一个1,后面跟的是n个0; 因此问题可以转化为判断1后面是否跟了n个0。如果将这个数减去1后会发现,仅有的那个1会变为0,而原来的那n个0会变为1;因此将原来的数与上(&)减去1后的数字,结果为零。
(num & num - 1) == 0
public class TwoPower {
/**
* 递归算法实现
*
* @param num
* @return
*/
static int is2Power(int num){
if(num < 2)
return -1;
if(num == 2){
return 1;
}else if(num % 2 == 0){
return is2Power(num / 2);
}else
return -1;
}
/**
* 位与判断,最快
*
* @param num
* @return
*/
static int anotherIs2Power(int num) {
if(num < 2)
return -1;
if((num & num - 1) == 0 )
return 1;
else
return -1;
}
/**
* 移位判断
*
* @param num
* @return
*/
static int binaryIs2Power(int num) {
if(num < 2)
return -1;
int temp = 1;
while (num > temp) {
temp <<= 1;
}
return temp == num ? 1 : -1;
}
public static void main(String[] args) {
long start = System.currentTimeMillis();
for(int i = 0;i< 2000000 ; i = i + 2){
if(is2Power(i) == 1){
System.out.print(i + " ");
}
}
long end = System.currentTimeMillis();
System.out.println("consume -> " + (end - start));
}
}
分别运行上面的三种算法,在我的双核2.8GHz,2G内存的老机器上,
递归查找2000000以内2的幂次方的数字,实际执行100w次循环,时间是47ms;
移位运算查找2000000以内,实际执行100w次循环,时间是31ms;
而第三种位与运算查找2000000以内的方法,执行100w次循环,需要的时间仅仅是15ms。