误差分析方法

花点时间找出开发集,测试集内的错误标记的例子,假阳性和假阴性,找出不同类型错误的错误数量(统计不同错误类型数量占总数的百分比),分析出哪个部分算法优化最有效。

如果标签Y是错误的,该如何处理和是时候值得花时间去处理

深度学习算法对随机误差(random errors)是非常robust的,
但是对系统性误差(systematic errors)就没那么robust了,需要修改标签

随机误差:

如果没用严重影响到你的正确率,就没必要修改或优化。

就需要修正错误标签了

而如果需要修正开集数据,则一些方针和原则需要考虑别

  1. 无论用什么方法来修正,都需要作用在开发集和测试集两者上
  2. 强烈建议同时检验算法判断正确和判断错误的例子(但一般只看错误)
  3. 训练集的标签一般不修改,因为它比开发集和测试集大得多,人工修改需要耗费大量精力。

快速搭建第一个系统,并进行迭代

因为优化的方向多达五十多种,而每个方向都是相对合理的,可以改善你的系统,你需要选择一个方向集中精力处理,如果你想要搭建一个全新的机器学习程序,就是快速搭建你的第一个系统,然后开始迭代。

建议

  1. 你快速设立开发集和测试集还有指标metric(label)—##等同于设立目标(打靶)
  2. 马上搭建好第一个学习系统模型,训练training set,看看你的算法表现怎么样。
  3. 在开发集测试集上,你的评估指标上表现如何
  4. 用之前学习的偏差方差分析
  5. 误差分析,特别是当你得到误差的来源,多是处于某个方向时,你就可以开始集中精力研究这个方向的技术了。
  6. 这么做的意义是让你拥有一个学习过,训练过的系统,让你确定偏差,方差的范围,就可以知道下一步应该优先做什么,让你能够进行误差分析,观察一些错误例子,想出所有能走的方向,哪些实际上是最有希望的方向。(如果你在这个应用程序领域有很多经验,则建议的适用程度会低一些)

还有一种情况适用程度更低,当这个领域有很多文献可以参考,与你的研究方向几乎完全一致

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值