1思路: 带权并查集+map+离散化思想
2分析: 由于n的值达到1000000000.所以如果还是直接用原来的方法的话肯定是不行的,所以想到了离散化思想。这里可以用map和hash离散,其它跟带权并查集一样的思路。
3注意: 这一题只有一个case,然后只要好到了ans后就直接break如果是用continue就会WA。还有如果如初结束没找到ans就输出k值。
4代码:
map版
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<map>
using namespace std;
#define MAXN 10010
int n , k , ans , cnt;
int father[MAXN];
int rank[MAXN];
map<int , int>m;
/*并查集的初始化*/
void init_Set(){
m.clear();
ans = cnt = 0;
for(int i = 0 ; i <= MAXN ; i++){
father[i] = i;
rank[i] = 0;
}
}
/*并查集的查找*/
int find_Set(int x){
if(father[x] == x)
return x;
int tmp = father[x];
father[x] = find_Set(tmp);
rank[x] += rank[tmp];
rank[x] %= 2;/*要mod 2*/
return father[x];
}
/*并查集的合并*/
void union_Set(int x , int y , int m){
int root_x = find_Set(x);
int root_y = find_Set(y);
father[root_y] = root_x;
rank[root_y] = (rank[x]-rank[y]+m+2)%2;/*注意只要有出现相减的地方要先加上2在mod 2,保证结果正确*/
}
int main(){
int left , right;
char ch[15];
map<int ,int>::iterator it;
scanf("%d%d" , &n , &k);
init_Set();
for(int i = 0 ; i < k ; i++){
scanf("%d%d%s" , &left , &right , ch);
left--;
it = m.find(left);
if(it == m.end())
m[left] = cnt++;
it = m.find(right);
if(it == m.end())
m[right] = cnt++;
if(!strcmp(ch , "even")){
if(find_Set(m[left]) == find_Set(m[right])){
if((rank[m[right]]-rank[m[left]]+2)%2 != 0 && !ans){/*要加上2再mod2*/
ans = i+1;
break;
}
}
else
union_Set(m[left] , m[right] , 0);/*合并*/
}
else{
if(find_Set(m[left]) == find_Set(m[right])){
if((rank[m[right]]-rank[m[left]]+2)%2 != 1 && !ans){/*要先加2再mod 2*/
ans = i+1;
break;
}
}
else
union_Set(m[left] , m[right] , 1);/*合并*/
}
}
if(ans)
printf("%d\n" , ans-1);
else
printf("%d\n" , k);
return 0;
}
hash版
/*
思路:hash + 带权并查集 + 离散化
分析:n非常大,所以必须使用离散化。这里就用到了hash表,把当前的点映射到另外一个整数,通过这个整数来查找和合并并查集。
hash表的使用:用一个first数组来表示表头,由于hash值会有重复所以要用一个next数组来表示链表。first[i]表示的是hash值为i的点的映射值,next[i]表示映射值为i的点的下一个有关系的点的映射值(和邻接表一样),num[i]表示映射值为i的点的原来的值。
这里的hash值求解选择取于法。
*/
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 10003
int ans , n , m , cnt;
int first[MAXN];
int next[MAXN];
int father[MAXN];
int rank[MAXN];
int num[MAXN];
/*判断是否插入成功*/
int hash_insert(int x){
int h = x%MAXN;/*求出hash值为h*/
int u = first[h];
while(u != -1){
if(num[u] == x)/*如果在hash表中直接返回映射值u*/
return u;
u = next[u];
}
cnt++;
num[cnt] = x;/*cnt作为点x的映射值*/
next[cnt] = first[h];/*表头往后移动*/
first[h] = cnt;/*更新表头*/
return cnt;
}
/*并查集的初始化*/
void init_Set(){
ans = cnt = 0;
memset(first , -1 , sizeof(first));
memset(next , -1 , sizeof(next));
memset(num , -1 , sizeof(num));
for(int i = 0 ; i <= MAXN ; i++){
father[i] = i;
rank[i] = 0;
}
}
/*并查集的查找*/
int find_Set(int x){
if(father[x] == x)
return x;
int tmp = father[x];
father[x] = find_Set(tmp);
rank[x] = (rank[x]+rank[tmp])%2;
return father[x];
}
/*并查集的合并*/
void union_Set(int x , int y , int m){
int root_x = find_Set(x);
int root_y = find_Set(y);
father[root_y] = root_x;
rank[root_y] = (rank[x]+m-rank[y]+2)%2;
}
int main(){
char ch[15];
int left , right;
scanf("%d%d" , &n , &m);
init_Set();
for(int i = 0 ; i < m ; i++){
scanf("%d%d%s" , &left , &right , ch);
int a = hash_insert(left-1);
int b = hash_insert(right);
if(!strcmp(ch , "even")){
if(find_Set(a) == find_Set(b)){
if((rank[b]-rank[a]+2)%2 != 0 && !ans){
ans = i+1;
break;
}
}
else
union_Set(a , b , 0);
}
else{
if(find_Set(a) == find_Set(b)){
if((rank[b]-rank[a]+2)%2 != 1 && !ans){
ans = i+1;
break;
}
}
union_Set(a , b , 1);
}
}
if(ans)
printf("%d\n" , ans-1);
else
printf("%d\n" , m);
return 0;
}