Dijkstra算法

//============================================================================
// Name        : Dijkstra.cpp
// Author      : 
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================


#include <iostream>
#include <stdio.h>
using namespace std;
#define MAXN 6
#define INF 100000
int n;


int map[MAXN][MAXN]; //定义一个 6*6 的图
int dist[MAXN]; //存储最短路径的 长度
int visit[MAXN]; //是否已求得最短路径
int path[MAXN]; //存储路径


//求start 到其他各点j的最短距离(存储在dist[j])
void dijkstra(int start)
{
	for (int i = 0; i < MAXN; i++)
	{
		dist[i] = map[start][i];
		visit[i] = 0; //初始化
		if (i != start && dist[i] < INF)
			path[i] = start; //用path记录路径
		else
			path[i] = -1;
	}


	visit[start] = 1;
	dist[start] = 0; //存储从开始位置到其他位置的距离


	for (int i = 0; i < MAXN - 1; i++)
	{
		int min = INF;
		int u = start;


		//选择当前集合T中具有最短路径的顶点u
		for (int j = 0; j < MAXN; j++)
		{
			if (!visit[j] && dist[j] < min)
			{
				u = j;
				min = dist[j];
			}
		}


		visit[u] = 1; //当顶点u加入到集合S, 表示它的最短路径已经求得


		/* 更新dist[] 和 path */
		for (int k = 0; k < MAXN; k++)
		{
			//如果位置k 还为求得 && u可达k
			if (!visit[k] && map[u][k] < INF)
			{
				int temp = dist[u] + map[u][k];
				// 如果通过u到达k比原来的距离要短,就更新。
				if (temp < dist[k])
				{
					dist[k] = temp;
					path[k] = u;
				}
			}
		}
	}


}


int main()
{
//	scanf("%d", &n);
	int a, b, c;


	for (int i = 0; i < 6; i++)
		for (int j = 0; j < 6; j++)
			map[i][j] = 100000;


	//读入数据 a==-1 时结束
	while (1)
	{
		scanf("%d %d %d", &a, &b, &c);
		if (a == -1)
			break;
		map[a][b] = c;
	}


	int start = 0;
	dijkstra(start); //求start 到其他各点j的最短距离(存储在dist[j])
	//输出最短距离
	for (int i = 0; i < MAXN; i++)
	{
		if (i != start)
		{
			printf("%d 到 %d 最短路径:", start, i);


			int temp = i;
			printf("%d", temp);
			while (path[temp] != start)
			{
				temp = path[temp];
				printf(" <- %d", temp);
			}
			printf(" <- %d ,长度: %d \n", start, dist[i]);
		}


	}


	return 0;
}


/*
 0 2 5
 0 3 20
 1 0 2
 1 4 8
 2 5 7
 2 1 15
 4 3 4
 5 3 10
 5 4 18
 -1 -1 -1
 */



测试;

0 2 5
0 3 20
1 0 2
1 4 8
2 5 7
2 1 15
4 3 4
5 3 10
5 4 18
-1 -1 -1
0 到 1 最短路径:1 <- 2 <- 0 ,长度: 20 
0 到 2 最短路径:2 <- 0 ,长度: 5 
0 到 3 最短路径:3 <- 0 ,长度: 20 
0 到 4 最短路径:4 <- 1 <- 2 <- 0 ,长度: 28 
0 到 5 最短路径:5 <- 2 <- 0 ,长度: 12 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值