CNN实现入侵检测(kdd99)

1 实验说明

CNN模型是自己搭的,可以用效果更好的VGG、ResNet等替换。
KDD99数据集下载地址:http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

2 实验过程

2.1 数据预处理

2.1.1 导入数据

因为KDDTrian+.txt没有表头,所以给他手动添加上标签

df = pd.read_csv('../../data/NSL-KDD/KDDTrain+.txt')
columns = (['duration'
,'protocol_type'
,'service'
,'flag'
,'src_bytes'
,'dst_bytes'
,'land'
,'wrong_fragment'
,'urgent'
,'hot'
,'num_failed_logins'
,'logged_in'
,'num_compromised'
,'root_shell'
,'su_attempted'
,'num_root'
,'num_file_creations'
,'num_shells'
,'num_access_files'
,'num_outbound_cmds'
,'is_host_login'
,'is_guest_login'
,'count'
,'srv_count'
,'serror_rate'
,'srv_serror_rate'
,'rerror_rate'
,'srv_rerror_rate'
,'same_srv_rate'
,'diff_srv_rate'
,'srv_diff_host_rate'
,'dst_host_count'
,'dst_host_srv_count'
,'dst_host_same_srv_rate'
,'dst_host_diff_srv_rate'
,'dst_host_same_src_port_rate'
,'dst_host_srv_diff_host_rate'
,'dst_host_serror_rate'
,'dst_host_srv_serror_rate'
,'dst_host_rerror_rate'
,'dst_host_srv_rerror_rate'
,'label'
,'level'])
df.columns = columns

2.1.2 one-hot编码

对分类变量(categorical variables)进行one-hot编码处理。one-hot编码可以让分类变量转换为便于计算交叉熵的one-hot向量。给定分类变量 x 1 x_1 x1 x 2 x_2 x2 … \ldots x n x_n xn,编码后的向量变为:
x 1 = [ 1 , 0 , … , 0 ] T , x_1=[1,0,\ldots,0]^\mathrm T, x1=[1,0,,0]T,
x 2 = [ 0 , 1 , … , 0 ] T , x_2=[0,1,\ldots,0]^\mathrm T, x2=[0,1,,0]T,
… \ldots
x n = [ 0 , 0 , … , 1 ] T , x_n=[0,0,\ldots,1]^\mathrm T, xn=[0,0,,1]T,
one-hot向量可以方便的与cnn的输出(logits)计算交叉熵

# 数值列
number_col = df.select_dtypes(include=['number']).columns
# 分类变量
cat_col = df.columns.difference(number_col)
cat_col = cat_col.drop('label')
# 将分类变量筛选出来
df_cat = df[cat_col].copy()

# one-hot编码
one_hot_data = pd.get_dummies(df_cat, columns=cat_col)

# 将原数据的分类变量去掉
one_hot_df = pd.concat([df, one_hot_data],axis=1)
one_hot_df.drop(columns=cat_col, inplace=True)

2.1.3 归一化

将数值列的元素缩放到 [ 0 , 1 ] [0,1] [0,1]区间

minmax_scale = MinMaxScaler(feature_range=(0, 1))

def normalization(df,col):
    for i in col:
        arr = df[i]
        arr = np.array(arr)
        df[i] = minmax_scale.fit_transform(arr.reshape(len(arr),1))
    return df
normalized_df = normalization(one_hot_df.copy(), number_col)

2.1.4 标签编码

类标签编码,如normal编码为0,backdoor编码为1等

# 为不同的类别进行编码
labels = pd.DataFrame(df.label)
label_encoder = LabelEncoder()
enc_label = labels.apply(label_encoder.fit_transform)
normalized_df.label = enc_label
label_encoder.classes_
data = normalized_df

2.2 数据加载

训练集与测试集按照2:8的比例划分

X = data.drop(columns=['label'])
y = data['label']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=50)

定义pytorch的load函数,加载数据,返回样本 X X X与标签 y y y

class LoadData(Dataset):
    def __init__(self, X, y):
        self.X = X
        self.y = y

    def __len__(self):
        return len(self.X)

    def __getitem__(self, index):
        X = torch.tensor(self.X.iloc[index])
        y = torch.tensor(self.y.iloc[index])
        return X, y
train_data = LoadData(X_train, y_train)
test_data = LoadData(X_test, y_test)
X_dimension = len(X_train.columns)
y_dimension = len(y_train.value_counts())
print(f"X的维度:{X_dimension}")
print(f"y的维度:{y_dimension}")
batch_size = 128

train_dataloader = DataLoader(train_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

2.3 搭建模型

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

CNN模块可以替换为ResNet等更深的网络模型

class CNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.backbone = nn.Sequential(
            nn.Conv1d(1, 3, kernel_size=2),
            nn.MaxPool1d(2, 2),
            nn.Conv1d(3, 8, kernel_size=2),
            nn.MaxPool1d(2, 2),
            nn.Conv1d(8, 16, kernel_size=2)
        )
        self.flatten = nn.Flatten()
        self.fc = nn.Sequential(
            nn.Linear(464, 64),
            nn.ReLU(),
            nn.Linear(64, 64),
            nn.ReLU(),
            nn.Linear(64, y_dimension)
        )

    def forward(self, X):
        X = self.backbone(X)
        X = self.flatten(X)
        logits = self.fc(X)
        return logits
CNN_model = CNN()
CNN_model.to(device=device)

2.4 模型训练

# 定义超参数
epochs = 20
lr = 1e-3
momentum = 0.9
optimizer = torch.optim.SGD(CNN_model.parameters(), lr=lr, momentum=momentum)
loss_fn = nn.CrossEntropyLoss()
def train(model, optimizer, loss_fn, epochs):

    losses = []
    iter = 0

    for epoch in range(epochs):
        print(f"epoch {epoch+1}\n-----------------")
        for i, (X, y) in enumerate(train_dataloader):
            X, y = X.to(device).to(torch.float32), y.to(device).to(torch.float32)
            X = X.reshape(X.shape[0], 1, X_dimension)
            y_pred = model(X)
            loss = loss_fn(y_pred, y.long())

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if i % 100 == 0:
                print(f"loss: {loss.item()}\t[{(i+1)*len(X)}/{len(train_data)}]")

                iter += 1
                losses.append(loss.item())

    return losses, iter
def test(model):
    positive = 0
    negative = 0
    with torch.no_grad():
        iter = 0
        loss_sum = 0
        for X, y in test_dataloader:
            X, y = X.to(device).to(torch.float32), y.to(device).to(torch.float32)
            X = X.reshape(X.shape[0], 1, X_dimension)
            y_pred = model(X)
            loss = loss_fn(y_pred, y.long())
            loss_sum += loss.item()
            iter += 1
            for item in zip(y_pred, y):
                if torch.argmax(item[0]) == item[1]:
                    positive += 1
                else:
                    negative += 1
    acc = positive / (positive + negative)
    avg_loss = loss_sum / iter
    print("Accuracy:", acc)
    print("Average Loss:", avg_loss)
def loss_value_plot(losses, iter):
    plt.figure()
    plt.plot([i for i in range(1, iter+1)], losses)
    plt.xlabel('Iterations (×100)')
    plt.ylabel('Loss Value')
if os.path.exists('CNN_model.pth'):
    CNN_model.load_state_dict(torch.load('CNN_model.pth'))
else:
    losses, iter = train(CNN_model, optimizer, loss_fn, epochs)
    torch.save(CNN_model.state_dict(), 'CNN_model.pth')

    loss_value_plot(losses, iter)
    plt.savefig('CNN_loss.png')

loss value

3 实验结果

执行test函数,得到结果

test(CNN_model)

result

4 完整代码

https://github.com/gwcrepo/kdd99-classification
github上的代码额外实现了全连接网络的分类

  • 8
    点赞
  • 127
    收藏
    觉得还不错? 一键收藏
  • 21
    评论
KDD99是一个常用的网络入侵检测数据集,其中包含了大量的网络连接数据。针对这个数据集,可以进行各种分类算法的实验和模型训练。 常见的网络入侵检测分类算法包括: 1. 基于规则的方法:这种方法通过定义一系列的规则来判断网络连接是否属于入侵行为。这些规则可以基于网络协议、流量特征等。这种方法简单直观,但需要手动定义规则,并且对新型入侵行为的检测能力有限。 2. 基于统计的方法:这种方法通过分析网络连接数据的统计特征来判断是否存在入侵行为。常见的统计特征包括连接持续时间、数据包数量、传输速率等。这种方法常用的算法有K-means、DBSCAN等聚类算法,以及基于概率模型的方法如高斯混合模型。 3. 基于机器学习的方法:这种方法通过训练分类模型来判断网络连接是否属于入侵行为。常见的机器学习算法包括决策树、支持向量机(SVM)、随机森林、神经网络等。在使用机器学习方法时需要对数据进行特征提取和预处理,以及选择合适的算法和参数进行模型训练。 4. 基于深度学习的方法:这种方法使用深度神经网络模型对网络连接数据进行特征提取和分类。常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。深度学习方法在网络入侵检测中取得了一定的效果,但需要大量的数据和计算资源进行训练。 以上是一些常见的网络入侵检测分类方法,具体选择哪种方法还需要根据具体情况进行实验和评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值