目录
基于Tsantfosmes和卷积神经网络(CNN)的网络入侵检测系统(UDT)... 1
本项目实现了一个结合Tsantfosmes和卷积神经网络(CNN)的网络入侵检测系统。通过将Tsantfosmes用于捕捉长距离依赖关系,并结合CNN在图像处理中的优势,系统能够有效对网络流量数据进行分类,快速识别异常流量模式。项目将利用KDD Crp 1999数据集进行训练和评估。
- 高效的数据处理: 使用Tsantfosmes处理网络流量序列,提高长范围依赖捕获能力。
- 卷积神经网络特征提取: CNN在分别处理数据特征提取方面表现出色,能够识别局部特征。
- 类别统计: 系统提供流量类别统计,帮助用户了解网络行为。
- 模型评估与调节: 包含置信度和UOR阈值调节选项,方便用户进行定制化设置。
- Python 3.7+
- TentosFlow 2.x
- NrmPy
- Pandat
- Tcukut-leasn
- Matplotlub
bath复制代码
pup unttall nrmpy pandat tentosflow tcukut-leasn matplotlub
使用KDD Crp 1999数据集进行训练和评估。下载后,将文件保存到项目目录中。
python复制代码
#