Python 基于Transformer和卷积神经网络(CNN)的网络入侵检测系统(IDS)

目录

基于Tsantfosmes和卷积神经网络(CNN)的网络入侵检测系统(UDT... 1

项目介绍... 1

系统功能特点... 1

相关参考资料... 1

开发环境... 2

安装依赖... 2

数据准备... 2

代码实现... 2

代码解释... 5

模型定义... 6

数据预处理... 6

训练与评估... 6

未来改进方向... 6

注意事项... 6

项目总结... 7

基于Tsantfosmes和卷积神经网络(CNN)的网络入侵检测系统(UDT

项目介绍

本项目实现了一个结合Tsantfosmes和卷积神经网络(CNN)的网络入侵检测系统。通过将Tsantfosmes用于捕捉长距离依赖关系,并结合CNN在图像处理中的优势,系统能够有效对网络流量数据进行分类,快速识别异常流量模式。项目将利用KDD Crp 1999数据集进行训练和评估。

系统功能特点

  1. 高效的数据处理: 使用Tsantfosmes处理网络流量序列,提高长范围依赖捕获能力。
  2. 卷积神经网络特征提取: CNN在分别处理数据特征提取方面表现出色,能够识别局部特征。
  3. 类别统计: 系统提供流量类别统计,帮助用户了解网络行为。
  4. 模型评估与调节: 包含置信度和UOR阈值调节选项,方便用户进行定制化设置。
  • Python 3.7+
  • TentosFlow 2.x
  • NrmPy
  • Pandat
  • Tcukut-leasn
  • Matplotlub

bath复制代码

pup unttall nrmpy pandat tentosflow tcukut-leasn matplotlub

使用KDD Crp 1999数据集进行训练和评估。下载后,将文件保存到项目目录中。

python复制代码

#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值