【微服务&云原生】Ribbon如何实现负载均衡服务调用

本文详细介绍了Spring Cloud Ribbon作为客户端负载均衡工具的原理和使用。Ribbon提供了多种负载均衡策略,如轮询、随机等,并支持自定义算法。通过集成Eureka,Ribbon可以在本地实现负载均衡,避免了集中式LB的额外开销。文中还展示了如何使用RestTemplate进行服务调用,以及如何替换默认负载均衡算法,实现更灵活的负载策略。
摘要由CSDN通过智能技术生成

🏡  博客首页:派 大 星

⛳️  欢迎关注  ❤️ 点赞  🎒 收藏  ✏️ 留言

🎢  本文由派大星原创编撰

🚧  系列专栏:微服务—云原生

🎈  本系列记录容器化技术的初次探险与深入思考历程,如有描述有误的地方还望诸佬不吝赐教


在这里插入图片描述


🎢  Ribbon负载均衡服务调用

🎠  概述

是什么

SpringCloud Ribbon是基于Netflix Ribbon实现的一套客户端负载均衡的工具
简单的说,RibbonNetflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法和服务调用。Ribbon客户端组件提供了一系列完善的配置项如连接超时,重试等。简单来说,就是在配置文件中列出Load Balancer( 简称LB)后面所有的机器,Ribbon会自动帮助你基于某种规则(如简单轮询,随机连接等)去连接这些机器。我们很容易使用Ribbon实现自定义的负载均衡算法。

能干嘛

LB(负载均衡)
LB负载均衡(Load Balance)是什么
简单来说就是将用户的请求平摊的分配到多个服务上,从而达到系统的HA(高可用)。
常见的负载均衡有软件Nginx、LVS、硬件F5
Ribbon本地负载均衡客户端 VS Nginx服务端负载均衡区别
Nginx是服务器负载均衡,客户端所有请求都会交给Nginx,然后由Nginx实现转发请求,即负载均衡是由服务端实现的。
Ribbon本地负载均衡,在调用微服务接口时候,会在注册中心上获取注册信息列表之后缓存到JVM本地,从而在本地实现RPC远程服务调用技术
集中式LB
即在服务的消费方和提供方之间使用独立的LB设施(可以是硬件,如F5,也可以是软件,如Nginx),由该设施负责把访问请求通过某种策略转发至服务的提供方
进程内LB
将LB逻辑集成到消费方,消费方从服务注册中心获知有哪些地址可用,然后自己再从这些地址中选择一个合适的服务器
Ribbon就属于进程内LB,它只是一个类库,集成于消费方进程,消费方通过它来获取到服务提供方的地址。

🎡  Ribbon负载均衡演示

架构说明

总结:Ribbon其实就是一个负载均衡的客户端组件,它可以和其他所需请求的客户端结合使用,和eureka结合只是其中的一个实例
在这里插入图片描述

Ribbon在工作的时候分成两步:

第一步先选择EurekaServer,它优先选择在同一区域内负载均衡较少的server
第二步再根据用户指定的策略,再从server取到服务注册列表中选择一个地址
其中Ribbon提供了多种策略:比如轮询、随机和根据响应时间加权
Ribbon等价于负载均衡+RestTemplate调用
spring-cloud-starter-netflix-eureka-client自带了spring-cloud-starter-ribbon引用
证明如下:
在这里插入图片描述

🗼  RestTemplate的使用

getForEntity方法/getForObject方法

/*返回对象为响应体中数据转化成的对象,基本上可以理解Json*/
@GetMapping("/consumer/payment/get/{id}")
public CommonResult<Payment> getPayment(@PathVariable("id")Long id){
    return restTemplate.getForObject(PAYMENT_URL+"/payment/get/"+id,CommonResult.class);
}

/*返回对象为ResponseEntity对象,包含了响应中的一些重要信息,比如响应头、响应状态码、响应体等*/
@GetMapping("/consumer/payment/getForEntity/{id}")
public CommonResult<Payment> getPayment2(@PathVariable("id")Long id){
    ResponseEntity<CommonResult> entity = restTemplate.getForEntity(PAYMENT_URL+"/payment/get/"+id,CommonResult.class);
    if (entity.getStatusCode().is2xxSuccessful()){
        //获取状态码和头信息
        log.info(entity.getStatusCode()+"\t"+entity.getHeaders());
        return entity.getBody();
    }else {
        return new CommonResult<>(444,"操作失败");
    }
}

postForObject方法/postForEntity方法

@GetMapping("/consumer/payment/create")
public CommonResult<Payment> create(Payment payment){
    return restTemplate.postForObject(PAYMENT_URL+"/payment/create",payment,CommonResult.class);
}

@GetMapping("/consumer/payment/createForEntity")
public CommonResult<Payment> create2(Payment payment){
    /*return restTemplate.postForObject(PAYMENT_URL+"/payment/create",payment,CommonResult.class);*/
    ResponseEntity<CommonResult> entity = restTemplate.postForEntity(PAYMENT_URL+"/payment/create",payment,CommonResult.class);

    if (entity.getStatusCode().is2xxSuccessful()){
        return entity.getBody();
    }else {
        return new CommonResult<>(444,"添加失败");
    }
}
⛱  Ribbon核心组件IRule

IRule:根据特定算法中从服务列表中选取一个要访问的服务
在这里插入图片描述

🏖  Ribbon自带的常见常用的算法
com.netflix.loadbalancer.RoundRobinRule  //轮询
com.netflix.loadbalancer.RandomRule  // 随机
com.netflix.loadbalancer.RetryRule //先按照RoundRobinRule的策略获取服务,如果获取服务失败则在指定时间内会进行重试,获取可用的服务
WeightedResponseTimeRule //RoundRobinRule的扩展,响应速度越快的实例选择权重越大,越容易被选择
BestAvailableRule // 会先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务
AvailabilityFilteringRule //先过滤掉故障实例,再选择并发量较小的实例
ZoneAvoidanceRule //默认规则,复合判断server所在区域的性能和server的可用性选择服务器
🏝  如何替换算法

注意细节

这个自定义配置类不能放在@ComponentScan所扫描的当前包下以及子包下,否则我们自定义的这个配置类就会被所有的Ribbon客户端所共享,达不到特殊化定制的目的了

新建package com.atguigu.myrule
上面包下新建MySelfRule规则类

@Configuration
public class MySelfRule {
    @Bean
    public IRule myRule(){
        return new RandomRule();//定义为随机
    }
}

主启动类添加@RibbonClient


@SpringBootApplication
@EnableEurekaClient
@RibbonClient(name = "CLOUD-PAYMENT-SERVICE",configuration = MySelfRule.class)
public class OrderMain81 {
    public static void main(String[] args) {
        SpringApplication.run(OrderMain81.class,args);
    }
}
🏜  Ribbon负载均衡算法

原理

负载均衡算法:rest接口第几次请求数%服务器集群总数量 = 实际调用服务位置下标,每次服务重启后rest接口技术从1开始。

List<ServiceInstance> instances = discoveryClient.getInstances("CLOUD-PAYMENT-SERVICE");

如:
    List[0] instances = 127.0.0.1:8002
    List[0] instances = 127.0.0.1:8002
   
8001 + 8002 组合成为集群,他们共计2台机器,集群总数为2,按照轮询算法原理:
    当总请求数为1时,1%2 = 1 对应下标位置为1,则获取的服务地址为:127.0.0.18001
    当总请求数为1时,2%2 = 0 对应下标位置为0,则获取的服务地址为:127.0.0.18002
    当总请求数为1时,3%2 = 1 对应下标位置为1,则获取的服务地址为:127.0.0.18001
    当总请求数为1时,4%2 = 0 对应下标位置为0,则获取的服务地址为:127.0.0.18002
    如此类推.....
🏕  手写一个负载的算法
@Component
public class MyLB implements LoadBalancer{

    private AtomicInteger atomicInteger = new AtomicInteger(0);

    public final int getAndIncrement(){
        int current;
        int next;
        do {
            current = this.atomicInteger.get();
            // 2147483647 最大的整型数
            next = current >= 2147483647 ? 0 : current + 1;
        }while (!this.atomicInteger.compareAndSet(current,next));
        System.out.println("++++++++++++++++ next :"+next);
        return next;
    }

    @Override
    public ServiceInstance instances(List<ServiceInstance> serviceInstances) {
        int index = getAndIncrement() % serviceInstances.size();
        return serviceInstances.get(index);
    }

}
🔔 🔔 🔔 E n d i n g 🔔 🔔 🔔 🔔 🔔 🔔Ending 🔔 🔔 🔔 🔔🔔🔔Ending🔔🔔🔔

在这里插入图片描述

评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT派同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值