🏡 博客首页:派 大 星
⛳️ 欢迎关注 ❤️ 点赞 🎒 收藏 ✏️ 留言
🎢 本文由派大星原创编撰
🚧 系列专栏:微服务—云原生
🎈 本系列记录容器化技术的初次探险与深入思考历程,如有描述有误的地方还望诸佬不吝赐教
目录
🌵 Hystrix断路器
🎄 概述
分布式系统面临的问题
复杂分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不可避免的失败
服务雪崩
多个微服务之间调用的时候,假设微服务A调用微服务B和微服务C,微服务B和微服务C又调用其它的微服务,这就是所谓的“扇出”。如果扇出的链路上某个微服务的调用响应时间过长或者不可用,对微服务A的调用就会占用越来越多的系统资源,进而引起系统崩盘,所谓的“雪崩效应”
对于高流量的应用来说,单一的后端依赖可能会导致所有服务器上的i所有资源都在几秒钟内饱和,比失败更糟糕的是,这些应用程序还可能导致服务之间的延迟增加
,备份队列
,线程
和其他系统资源紧张,导致整个系统发生更多的级联故障,这些都表示需要对故障和延迟进行隔离和管理,以便单个依赖关系的失败,不能取消整个应用程序或系统。
所以通常当你发现一个模块下的某个实例失败后,这时候这个模块依然还会接收流量,然后这个有问题的模块还会发生级联故障,或者叫雪崩
是什么?
Hystrix
是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时
、异常
等,Hystrix
能够保证在一个依赖出现问题的情况下,不会导致整体服务失败,避免级联故障,以提高分布式系统的弹性。
“断路器“
本身是一种开关装备,当某个服务单元发生故障之后,通过断路器的故障监控(类似熔断保险丝),向调用方返回一个符合预期的、可处理的备选响应(FallBack),而不是长时间的等待或者抛出调用方无法处理的异常,这样就保证了服务调用方的线程不会被长时间、不必要的占用,从而避免了故障在分布式系统中的蔓延,乃至雪崩。
能干嘛?
● 服务降级
● 服务熔断
● 接近实时的监控
● 等等
🌾 Hystrix重要概念
服务降级fallback
服务器忙,请稍后再试,不让客户端等待并立刻饭hi一个友好的提示,fallback
哪些情况会触发降级
● 程序运行异常
● 超时
● 服务熔断触发服务降级
● 线程池/信号量打满也会导致服务降级
服务熔断
● 类似保险丝达到最大服务访问后,直接拒绝访问,拉闸限电,然后调用服务降级的方法并返回友好提示
● 就是保险丝
○ 服务的降级——>进而熔断——>恢复调用链路
服务限流
● 秒杀高并发等操作,严禁一窝蜂的过来拥挤,大家排队,一秒钟N个,有序进行
🌲 Hystrix案例
<!--新增hystrix-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
启动类添加openFeign注解
@SpringBootApplication
@EnableFeignClients
public class OrderHystrixMain80 {
public static void main(String[] args) {
SpringApplication.run(OrderHystrixMain80.class,args);
}
}
Service层逻辑
@Component
@FeignClient(value = "CLOUD-PROVIDER-HYSTRIX-PAYMENT")
public interface PaymentHystrixService {
@GetMapping("/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id")Integer id);
@GetMapping("/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id")Integer id);
}
前端控制层
@RestController
@Slf4j
public class OrderHystrixController {
@Resource
private PaymentHystrixService paymentHystrixService;
@GetMapping("/consumer/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id")Integer id){
String result = paymentHystrixService.paymentInfo_OK(id);
return result;
}
@GetMapping("/consumer/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id")Integer id){
String result = paymentHystrixService.paymentInfo_TimeOut(id);
return result;
}
}
如何解决?解决的要求
● 超时导致服务器变慢(转圈)
○ 超时不再等待
● 出错(宕机或程序运行出错)
○ 出错要有兜底
● 解决
○ 对方服务(8001
)超时了,调用者(80
)不能一直卡死等待,必须有服务降级
○ 对方服务(8001
)宕机了,调用者(80
)不能一直卡死等待,必须有服务降级
○ 对方服务(8001
)OK,调用者(80
)自己出故障或有自我要求(自己的等待时间小于服务提供者,自己处理降级)
🌳 服务降级
降级配置
@HystrixCommand
● 8001先从自身找问题
○ 设置自身调用超时时间的峰值,峰值内可以正常运行,超过了需要有兜底的方法处理,作服务降级fallback
● 8001fallback
○ 业务类启用@HystrixCommand报异常后如何处理
■ 一旦调用服务方法失败并抛出了错误信息后,会自动调用@HystrixCommand
标注好的fallbackMethod
调用类中的指定的方法
@Service
public class PaymentService {
/**
* 正常访问ok
* @param id
* @return
*/
public String paymentInfo_Ok(Integer id){
return "线程池"+Thread.currentThread().getName()+" paymentInfo_Ok,id: "+id+"\t"+"哈哈";
}
@HystrixCommand(fallbackMethod = "paymentInfo_TimeOutHandler",commandProperties = {
@HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds",value = "3000")
})
public String paymentInfo_TimeOut(Integer id){
//int timeNumber = 5;
//int age = 10/0;
//暂停几秒钟线程
try {
TimeUnit.SECONDS.sleep(timeNumber);
}catch (Exception e){
e.printStackTrace();
}
return "线程池"+Thread.currentThread().getName()+" paymentInfo_TimeOut,id: "+id+"\t"+"哈哈"+" 耗时(秒)";
}
/**
* 兜底的方法
* @param id
* @return
*/
public String paymentInfo_TimeOutHandler(Integer id){
return "线程池"+Thread.currentThread().getName()+" 系统繁忙,请稍后再试,id: "+id+"\t"+"哈哈Handler";
}
}
//主启动类新添注解
@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker//新添注解
public class PaymentHystrixMain8001 {
public static void main(String[] args) {
SpringApplication.run(PaymentHystrixMain8001.class,args);
}
}
● 80fallback
○ 80订单微服务,也可以更好的保护自己,自己也依样画葫芦进行客户端降级保护
○ 我们自己配置过热部署方式对Java代码的改动明显,但对@HystrixCommand
内属性的修改建议重启微服务
##yaml配置feign
feign:
hystrix:
enabled: true
//主启动类
@EnableHystrix
//业务层代码
@GetMapping("/consumer/payment/hystrix/timeout/{id}")
@HystrixCommand(fallbackMethod = "paymentTimeOutFallBackMethod",commandProperties = {
@HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds",value = "1500")
})
public String paymentInfo_TimeOut(@PathVariable("id")Integer id){
String result = paymentHystrixService.paymentInfo_TimeOut(id);
return result;
}
public String paymentTimeOutFallBackMethod(@PathVariable("id")Integer id){
return "我是消费者80,对方支付系统繁忙请10秒钟后再试或者自己运行出错请检查自己";
}
🌴 目前的问题:
● 每个业务方法对应一个兜底的方法,代码膨胀
● 统一和自定义的分开
解决问题:
● 代码膨胀
○ feign
接口系列 @DefaultProperties(defaultFallBack="")
@DefaultProperties(defaultFallBack=" ")
- 1 每个方法配置一个服务降级的方法,技术上可以,实际上傻X
- N 除了个别重要核心业务有专属,其他普通的可以通过
@DefaultProperties(defaultFallBack=" ")
统一跳转到统一处理的页面 - 通用的和独享的各自分开,避免了代码的膨胀,合理减少了代码量
● 和业务逻辑混一起??
● 服务降级,客户端去调用服务端,碰上服务端宕机或关闭
● 本次案例服务降级处理是在客户端80实现完成的,与服务端8001没有关系,只需要为Feign客户端定义的接口添加一个服务降级处理的实现类即可实现解耦
//编写一个类实现Feign接口
@Service
public class PaymentFallBackService implements PaymentHystrixService{
@Override
public String paymentInfo_OK(Integer id) {
return "---PaymentFallBackService fall back-paymentInfo_OK,o(Π__Π)0";
}
@Override
public String paymentInfo_TimeOut(Integer id) {
return "------PaymentFallbackService fall back-paymentInfo_TimeOut,o(Π Π)o";
}
}
🌱 服务熔断
熔断机制的概述
熔断机制是应对雪崩效应的一种微服务链路的保护机制,当扇出链路的某个微服务出错不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回错误的响应信息。当检测到该节点微服务调用响应正常后,恢复调用链路。
在SpringCloud
框架里,熔断机制通过Hystrix
实现,Hystrix
会监控微服务间调用的状况,当失败的调用到一定阈值,缺省是5秒内20次调用失败,就会启动熔断机制。熔断机制的注解是@HystrixCommand
实操
修改cloud-provider-hystrix-payment8001
Service业务逻辑层
//===============以下服务熔断=====上面是服务降级=============
@HystrixCommand(fallbackMethod = "paymentCircuitBreaker_fallback",commandProperties = {
@HystrixProperty(name = "circuitBreaker.enabled",value = "true"),//是否开启断路器
@HystrixProperty(name = "circuitBreaker.requestVolumeThreshold",value = "10"),//请求次数
@HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds",value = "10000"),//时间范围
@HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",value = "60"),//失败率达到多少后跳闸
})
public String paymentCircuitBreaker(@PathVariable("id")Integer id){
if (id < 0){
throw new RuntimeException("**********id 不能为负数");
}
String serialNumber = IdUtil.simpleUUID();
return Thread.currentThread().getName()+"\t"+"调用成功,流水号:"+serialNumber;
}
public String paymentCircuitBreaker_fallback(@PathVariable("id")Integer id){
return "id 不能为负数,请稍后再试,/(T o T)/~~~ id: "+id;
}
Controller前端控制器
//===========服务熔断=========
@GetMapping("/payment/circuit/{id}")
public String paymentCircuitBreaker(@PathVariable("id")Integer id){
String result = paymentService.paymentCircuitBreaker(id);
log.info("**********result: "+result);
return result;
}
结论:
● 熔断类型
○ 熔断打开请求不再进行调用当前服务,内部设置时钟一般为MTTR(平均故障处理时间),当打开时长达到所设时钟则进入半熔断状态
○ 熔断关闭熔断关闭不会对服务进行熔断
○ 熔断半开部分请求根据规则调用当前服务,如果请求成功且符合规则认为当前服务恢复正常,关闭熔断
● 断路器在什么情况下起作用
涉及到断路器的三个重要参数:快照时间窗、请求总数阈值、错误百分比阈值
- 快照时间窗:断路器确定是否打开需要统计一些请求和错误数据,而统计的时间范围就是快照时间窗,默认为最近的10秒
- 请求总数阈值:在快照时间窗内,必须满足请求总数阈值才有资格熔断。默认为20,意味着在10秒内,如果该hystrix命令的调用次数不足20次,即使所有的请求都超时或者其他原因失败,断路器都不会打开
- 错误百分比阈值:当请求总数在快照时间窗内超过了阈值,比如发生了30次调用,如果在这30次调用中,有15次发生了超时异常,也就是超过50%的错误百分比,在默认设定50%阈值情况下,这时候就会将断路器打开。
● 断路器开启或关闭的条件
○ 当满足一定的阈值的时候(默认10秒内超过20个请求次数)
○ 当失败率达到一定的时候(默认10秒内超过50%的请求失败)
○ 到达以上阈值,断路器将会开启
○ 当开启的时候,所有请求都不会进行转发
○ 一段时间之后(默认是5秒),这个时候断路器是半开状态,会让其中一个请求进行转发。如果成功,断路器会关闭,若失败,继续开启。重复4和5
● 断路器打开之后
○ 再有请求调用的时候,将不会调用主逻辑,而是直接调用降级fallback
,通过断路器,实现了自动地发现错误并将降级逻辑切换为主逻辑,减少响应延迟的效果
○ 原来的主逻辑要如何恢复呢?
hystrix
为我们实现了自动恢复功能。当断路器打开,对主逻辑进行熔断之后,hystrix会启动一个休眠时间窗,在这个时间窗内,降级逻辑是临时的成为主逻辑,当休眠时间窗到期,断路器将进入半开状态,释放一次请求到原来的主逻辑上,如果此次请求正常返回,那么断路器将继续闭合,主逻辑恢复,如果这次请求依然有问题,断路器将继续进入打开状态,休眠时间窗重新计时。
🎍 Hystrix工作流程
🎋 服务监控HystrixDashboard
概述
除了隔离依赖服务的调用以外,Hystrix还提供了准实时的调用监控(Hystrix Dashboard)
,Hystrix会持续地记录所有通过Hystrix
发起的请求的执行信息,并以统计报表的和图形的形式展示给用户,包括每秒执行多少请求多少成功,多少失败等。Netflix
通过hystrix-metrics-stream
项目实现了对以上指标的监控,SpringCloud
也提供了Hystrix Dashboard
的整合,对监控内容转换成可视化界面
实心圈:共有两种含义。它通过颜色的变化代表了实例的健康程度,它的健康从绿色<黄色<橙色<红色递减
该实心圈除了颜色的变化之外,它的大小也会根据实例的请求流量发生变化,流量越大该实心圈就越大,所以通过该实心圈的展示,就可以在大量的实例中快速的发现故障实例和高压力实例