【生态敏感性·时空异质性·驱动因素· 地理探测器模型·川藏铁路|论文解读3】川藏铁路沿线地区生态敏感性及其驱动因素

【生态敏感性·时空异质性·驱动因素· 地理探测器模型·川藏铁路|论文解读3】川藏铁路沿线地区生态敏感性及其驱动因素

【生态敏感性·时空异质性·驱动因素· 地理探测器模型·川藏铁路|论文解读3】川藏铁路沿线地区生态敏感性及其驱动因素



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

想要参加学术会议的宝子们可以看看这个网站,中稿率很高,都是国际会议,包含各类学科,尤其是对于大三大四研一研二的宝子们!投个会议评个国奖,妥妥起飞!祝各位还在学海无涯的宝子们早日上岸!!

1. 学术交流

参加学术会议是展示您研究成果和获取反馈的绝佳机会。在会议上,您可以与来自各地的研究者进行深入交流,讨论最新的研究动态与趋势,分享经验与观点。

2. 拓展人脉

学术会议汇聚了来自不同高校和研究机构的优秀学者和学生。这是一个拓展您学术网络的良好时机。建立联系不仅可以帮助您获得未来的合作机会,还可能为您职业发展打开新的大门。

3. 学习前沿知识

会议上通常会邀请多位领域内的专家进行主题演讲和报告,分享他们的研究成果和未来的研究方向。这是获取前沿知识和灵感的绝佳机会,能够激励您在研究道路上的前行。

论文地址:https://doi.org/10.1007/s10668-023-03462-z
2023·Environment, Development and Sustainability·成都理工大学

2. 材料与方法

2.3 研究方法

2.3.1 生态系统敏感性评估指标体系的建立

不同地区的生态条件存在差异。由于不同学科采用的定义不同,目前尚无国际统一的生态敏感性评估标准或规范。考虑到数据获取、环境特征、空间分辨率等因素,采用了来自土壤侵蚀(降雨侵蚀性、土壤质地)、土地状态(土地利用和植被覆盖度)、地形因子(海拔、坡度和坡向)、气候条件(年均气温和降水量)等方面的十个指标(见表1)来建立评估指标体系。所有指标分为五个等级,从不敏感到极端敏感,分别赋予1、3、5、7、9分。
在这里插入图片描述

2.3.2 指标权重的确定

层次分析法(AHP)能够评估指标层的纵向控制,但难以反映每个单一因素的内部和横向结构控制。各因素权重的量化具有主观性。变异系数(CV)法能够揭示内部和横向结构与每个因素的关系,有效消除了层次分析法中的固有主观性。尤其是差异较大的指标能够更好地反映评估单元之间的差距。因此,通过结合AHP和CV,权重(见表1)展现了显著的客观性。公式如下:
每个指标层的平均值和标准差为:
在这里插入图片描述

每个指标层的变异系数为:

在这里插入图片描述

每个评估因子的权重为:

在这里插入图片描述

其中, i i i为评估指标, j j j为评估指标因子, n n n为指标数量, A i A_i Ai i i i分别为每个指标层的平均值和标准差, V i V_i Vi为变异系数, P i P_i Pi为各因子的权重, F i F_i Fi为生态敏感性的综合权重。

2.3.3 生态敏感性评估

通过地理信息系统(GIS)技术,结合所有评估指标,可以绘制综合生态敏感性指数,公式如下:
在这里插入图片描述

其中, X X X为综合生态敏感性, n n n为指标数量, w i w_i wi为指标 i i i的权重, u i u_i ui为指标 i i i的生态敏感性。 X X X值越大,生态敏感性等级越高,反之亦然。根据《生态功能区划暂行规定—生态红线划定技术指南》及其他相关规范标准,评估结果划分为五个等级:生态不敏感区、轻度敏感区、 moderate敏感区、高度敏感区和极度敏感区(见表2)。

2.3.4 生态敏感性驱动因素分析

地理探测模型可以定量地探索地理现象的驱动机制,无需对变量进行限制或假设(Li等,2013;Onozuka & Hagihara,2017;Ren等,2014)。该模型包括因素探测器、生态探测器、风险探测器和交互探测器。本研究采用了因素探测器和交互探测器来分析生态敏感性的驱动因素。**因素探测器通过q值定量识别自变量X对因变量Y的解释能力,交互探测器则可以检测两个解释变量X1和X2对Y的交互效应。**本研究选取了DEM、RA、LU、TEM、PRE、FVC、SRSI和PD作为自变量(影响因子),综合生态敏感性指数作为因变量,应用于地理探测模型。

3 结果与分析

3.1 生态敏感性时空变化特征

总体而言,川藏铁路沿线的生态敏感性具有明显的地理空间差异性(图2a-c)。高敏感和极高敏感区域宏观上呈现分散且局部集中分布。极高敏感区主要分布在川藏铁路沿线的西部地区(如波密、巴松等县)。这些地区地表结构简单,土壤侵蚀严重,生态环境质量较差。高敏感和中等敏感区域分布广泛,占研究区的50%以上。中等敏感区主要分布在轻微敏感和不敏感区域周围。高敏感和中等敏感区域主要位于中部和西部(如米林、洛隆、白玉等县),而轻微敏感和不敏感区域则分布在东部地区(如理塘、雅江、康定、荥经等县)。2000年至2018年,研究区主要由中等敏感、高敏感和极高敏感区组成。以2018年为例,这三类区域的面积分别占总面积的28.28%、33.97%和5.23%(图2d)。从2000年到2018年,平均生态敏感性分别为5.17、5.43和5.37,表明2000年至2010年期间研究区生态环境有所恶化,但2010年至2018年有所轻微下降。这一现象可能与生态环境的恢复力有关(Wohlfart等,2016)。在整个研究期间,极高敏感区域呈现先增后减的变化趋势,变化率为1.18%,而不敏感区域则先减后增。轻微敏感和中等敏感区域持续下降。中等敏感区域的平均比例为28.82%。在2000-2010年和2010-2018年期间,主要的动态变化类型是中等敏感区转变为高敏感区,且主要集中在研究区西部
在这里插入图片描述

3.2 参数变化特征

评估各参数的影响有助于生态保护与管理,为决策者提供关于土壤侵蚀、土地状况、地形、气候条件与生态敏感性之间关系的深入理解。

在土壤侵蚀变化方面,如图3a-c所示,**中央地区由于地形起伏较大,对土壤侵蚀的敏感性较高。而在天全县、宝兴县等东部地区,土壤侵蚀的敏感性较低。**从2000年到2018年,都市区周边的土壤侵蚀情况有所恶化,相反,偏远山区情况则有明显改善。特别是西部地区,如波密县,土壤侵蚀情况有所好转,而东部地区,尤其是理塘和雅江县,土壤侵蚀恶化。
在这里插入图片描述

如图3d-f所示,西部地区的土地利用状况普遍较差,这可能与土地荒漠化造成的植被覆盖不足有关(Karamesouti等,2018;Xu等,2019)。从西到东,敏感性逐渐降低,表明土地状况逐步改善。从2000年至2018年,中等敏感区呈现东移趋势,而东部的轻微敏感和不敏感区域呈现减少趋势。

地形因素的分布(图3g)显示了高敏感性与低敏感性区域的交互分布。总体分布模式是西部(如波密、巴松、米林等县)高敏感,东部(如理塘、雅江、天全等县)低敏感。不同的坡向具有不同的太阳辐射强度和照射时长,导致区域生态效应差异显著。其中,高地和陡峭地形的生态敏感性较高。

图3h-j表明,气候变化的高敏感区域主要集中在西部和中部。从2000年至2010年,米林、巴依、波密和理塘等县的高敏感区呈增加趋势。2010年至2018年,气候高敏感区域明显减少,而低敏感区域显著扩大(如米林、白玉、理塘、巴塘等县)。这些结果强调了气候变化对当地植被生长的重要性(Gratani,2014;J.-F. Wang等,2016)。例如,气温和降水量作为土地表面大规模变化的重要因素,直接影响作物产量、植被生长和土壤水分含量(如玉成和宝兴县)。
在这里插入图片描述

3.3 生态敏感性的决定因素及相互作用

3.3.1 驱动因素显著性分析

应用地理探测模型识别驱动因素对生态敏感性的影响。自变量由人为和自然因素组成,2000、2010和2018年的生态敏感性值作为因变量。从图4可见,决定生态敏感性的驱动因素的平均决定力按降序排列为:DEM(0.444)> PRE(0.358)> TEM(0.342)> FVC(0.257)> SRSI(0.169)> LU(0.163)> PD(0.161)> RA(0.072)。这表明DEM、PRE和TEM是生态敏感性的关键因素。尽管其他因素的解释力低于30%,但它们对空间分异仍有一定影响。从2000年至2018年,PRE和TEM的解释强度呈增加趋势,特别是PRE,从2000年的0.190增长至2018年的0.514。相比之下,除了DEM、LU和PD略有变化外,其他三个指标在一定程度上有所下降。
在这里插入图片描述

3.3.2 生态敏感性影响因素的相互作用

**从表3可以推测,任何驱动因素与另一个因素的相互作用对生态敏感性的影响要大于单独因素的影响。**相互作用的结果大多为双增强效应(q(× 1 ∩ × 2)> Max(q(× 1),q(× 2))),少数为非线性增强效应(q(× 1 ∩ × 2)> q(× 1))。非线性增强效应意味着X1和X2的协同效应超过了它们单独效应的总和,如SRSI和PRE(59.4%)、LU和PRE(52.7%)、DEM和RA(52.5%)。同时,双增强效应意味着X1和X2的协同效应强于各自的独立效应,如FVC和TEM(43.7%)、LU和DEM(48.4%)、SRSI和PD(20.7%)。与单因素检测结果不同,LU、PD和RA在与其他多个因素相互作用后,对生态敏感性的影响得到了凸显,约47%的成对相互作用的q值超过了0.4。值得注意的是,PRE和FVC的相互作用产生了最大的影响,进一步验证了PRE和FVC在生态敏感性中的重要性。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值