【深度学习|特征增强融合模块】ABCNet中的AEM模块相对于BiSeNet 中的ARM 模块是如何优化的?
【深度学习|特征增强融合模块】ABCNet中的AEM模块相对于BiSeNet 中的ARM 模块是如何优化的?
文章目录
ARM 模块 (Attention Refinement Module)
作用:
- ARM 模块的核心作用是对输入特征进行通道级的全局信息建模,突出关键特征并抑制冗余信息,从而增强对目标区域的关注。
结构分析:
-
全局平均池化 (
GlobalAveragePooling2D
):将输入特征 x 通过全局平均池化压缩到一个单一通道的特征向量,捕获全局上下文信息。 -
卷积 (
Conv2D
):使用一个通道数与输入相同的 1×1 卷积对