【深度学习|特征增强融合模块】ABCNet中的AEM模块相对于BiSeNet 中的ARM 模块是如何优化的?

【深度学习|特征增强融合模块】ABCNet中的AEM模块相对于BiSeNet 中的ARM 模块是如何优化的?

【深度学习|特征增强融合模块】ABCNet中的AEM模块相对于BiSeNet 中的ARM 模块是如何优化的?



在这里插入图片描述

ARM 模块 (Attention Refinement Module)

作用:

  • ARM 模块的核心作用是对输入特征进行通道级的全局信息建模,突出关键特征并抑制冗余信息,从而增强对目标区域的关注。

结构分析:

  • 全局平均池化 (GlobalAveragePooling2D):将输入特征 x 通过全局平均池化压缩到一个单一通道的特征向量,捕获全局上下文信息。

  • 卷积 (Conv2D):使用一个通道数与输入相同的 1×1 卷积对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值