【论文推荐|深度学习,滑坡检测,多光谱影像,自然灾害,遥感】2022年Landslide4Sense竞赛成果:基于多源卫星影像的先进滑坡检测算法研究(七)
【论文推荐|深度学习,滑坡检测,多光谱影像,自然灾害,遥感】2022年Landslide4Sense竞赛成果:基于多源卫星影像的先进滑坡检测算法研究(七)
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz
论文DOI:10.1109/JSTARS.2022.3220845
VII. 特别奖团队
L4S 提供了包含 14 个波段的数据,而大多数深度学习(DL)语义分割模型,如 [30]、[33]、[50] 和 [51],通常需要 RGB 图像作为输入。这意味着我们无法利用预训练的权重来提升模型性能并缩短训练时间。在 L4S 数据集上,我们尝试了三种类型的模型:U-Net、Deeplabv3 和 Deeplabv3+,但这些模型的表现并不理想,F1 分数分别仅为 65%、66% 和 67%。因此,我们探索了使用多光谱卫星影像来进行基于深度学习的滑坡分割任务。
A. 多光谱 U-Net
考虑到 L4S 数据集中影像的不同分辨率波段,我们提出了一种新型的模型——多光谱 U-Net。该模型具有两个输入分支,分别处理不同分辨率的输入。模型结构如图 12 所示。多光谱 U-Net 包括两个分支:高分辨率分支(上部分)和常规分辨率分支(下部分),这两个分支的特征将被合并,并共同贡献最终的分割预测。
高分辨率分支
用于处理高分辨率数据,能够生成包含更多边缘信息的精细特征图。具体而言,我们通过使用在 MobileNetV2 [52] 中引入的反向残差结构和线性瓶颈来实现该分支,其中包括两层逐点卷积层和一层深度卷积层。为了避免特征图维度的剧烈增加,从 4 维扩展到 128 维,我们首先应用了两层简单的卷积层,特征维度会扩展,然后在深度卷积层后恢复到原始维度。此外,该分支没有下采样层,因为该分支的唯一目的是提取额外的边缘信息,从而获得更好的分割预测。
常规分辨率分支
我们对原始 U-Net [30] 进行了一些修改。U-Net 是一种可扩展的分割模型,具有对称结构,这种结构广泛应用于其他分割任务。替换 U-Net 的一些实现非常方便,这也是我们选择它作为模型的主要原因。具体的修改如下:
- 由于输入图像的尺寸(128 × 128 像素)有限,我们减少了下采样层的数量。为了确保最小的特征大小至少为 16 × 16,我们在 U-Net 模型中仅使用了三次下采样操作。
- 在模型中广泛使用了 ResNet 中引入的跳跃连接,以缓解梯度消失问题。
- 我们将激活函数更新为 SMU [53],该函数能够在不损失推理速度的情况下提高模型性能。
在多光谱 U-Net 模型中,我们将所有 14 个波段输入到常规分辨率分支,将 10 米分辨率波段(band2、band3、band4 和 band8)输入到高分辨率分支。为了平衡两个分支的特征维度,我们使高分辨率分支和常规分辨率分支具有相同的输出形状:128 × 128 × 128。两个分支的特征将被拼接成形状为 128 × 128 × 256 的特征图,并用于最终的像素级预测。
B. 实验
我们在 NVIDIA GeForce RTX 3090 GPU 和 Intel® Core™ i7-7800X CPU@3.50GHz 上训练了该模型。为了更清晰地比较三种模型的性能,我们使用了批处理大小为 8、Adam 优化器、预热和重启的余弦学习率(如图 13 所示)以及交叉熵损失函数。我们将官方训练数据集分为两部分,3539 张图像用于训练,260 张图像用于测试。然后,我们在每个模型训练 200 个 epoch 后,比较了多光谱 U-Net 与 Deeplabv3+ 和 U-Net 在该数据集上的性能。就召回率和 F1 分数而言,多光谱 U-Net 显著高于其他两种模型,但其精度低于 U-Net。值得注意的是,Deeplabv3+ 的精度明显低于多光谱 U-Net 和 U-Net,我们认为潜在的原因是大量的下采样层导致了边缘信息的丢失。
为了更好地理解不同模型在验证数据集上的表现,我们分析了预测分割结果,并在图 14 中选择了三个具有代表性的例子。在第一个例子中,三种模型的滑坡分割结果相似,可以看出 Deeplabv3+ 倾向于预测较大的区域,但缺乏精细的边缘信息。换句话说,这可能是 Deeplabv3+ 召回率高于 U-Net,但精度显著较低的原因。我们无法直接从第二个例子中的图像中看到滑坡的痕迹,但所有三种模型都能很好地预测出滑坡,这意味着除了 RGB 波段外的所有波段(band2–band4)都对最终预测有所贡献。第三个例子展示了一个非常复杂的滑坡场景,在这个场景中,我们可以清楚地看到多光谱 U-Net 的优异表现。
在 L4S 竞赛的测试阶段,我们首先使用训练好的模型预测验证数据集,并从预测结果中获取标注。然后,我们通过将标注过的验证数据集与旧的训练数据集合并,获得新的训练数据集。最后,在新的训练数据集上训练多光谱 U-Net,并在测试集上获得了 71.29% 的 F1 分数。
下节请参考:【论文推荐|深度学习,滑坡检测,多光谱影像,自然灾害,遥感】2022年Landslide4Sense竞赛成果:基于多源卫星影像的先进滑坡检测算法研究(八)
第八届智能制造与自动化国际学术会议(IMA 2025)
- 2025 8th International Conference on Intelligent Manufacturing and Automation
- 2025年2月28-3月2日 | 中国·江苏南京
- 大会官网:www.icamima.org
- 接受/拒稿通知:投稿后3-8天
- 收录检索:EI,Scopus稳定检索