【研究生必备】2025年3-6月国际学术会议征稿开启!生物技术、健康大数据、生物医学、食品科学、健康信息化等领域全覆盖!
【研究生必备】2025年3-6月国际学术会议征稿开启!生物技术、健康大数据、生物医学、食品科学、健康信息化等领域全覆盖!
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://ais.cn/u/mmmiUz
前言
亲爱的硕博生们,2025年一系列高水平的国际学术会议即将在中国广州、昆明以及意大利博洛尼亚举办,涵盖生物技术、健康大数据、生物医学、食品科学、健康信息化等多个前沿领域。无论你的研究方向是什么,这里都有适合你的舞台!以下是会议详情,快来看看吧!
📊 2025年健康大数据国际学术会议(HBD 2025)
- 2025 International Conference on Health Big Data
- 📅时间:2025年3月28-30日
- 📍地点:中国·昆明
- 💡亮点:探讨健康大数据的采集、分析与应用,推动医疗健康领域的智能化发展。投稿后3-5个工作日快速反馈,高效省心!
- 📚检索:EI Compendex和Scopus双检索,稳定检索,提升论文国际影响力!
- 👨🎓适合人群:研究健康大数据、医疗信息化、人工智能在健康领域应用等的学者和学生。
- 代码示例(Python - 疾病预测模型)
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
import pandas as pd
# 示例健康数据(特征:年龄、血压、血糖;标签:糖尿病风险)
data = pd.DataFrame({
'Age': [45, 60, 33, 58, 29],
'BP': [120, 140, 110, 130, 125],
'Glucose': [88, 200, 92, 180, 85],
'Diabetes': [0, 1, 0, 1, 0]
})
# 训练随机森林模型
model = RandomForestClassifier(n_estimators=100)
X = data[['Age', 'BP', 'Glucose']]
y = data['Diabetes']
# 交叉验证
scores = cross_val_score(model, X, y, cv=3)
print(f"模型准确率: {scores.mean():.2f} (±{scores.std():.2f})")
🏥 第四届生物医学与智能系统国际学术会议(IC-BIS 2025)
- The 4th International Conference on Biomedical and Intelligent Systems
- 📅时间:2025年4月11-13日
- 📍地点:意大利·博洛尼亚(博洛尼亚大学)
- 💡亮点:聚焦生物医学与智能系统的交叉研究,投稿后7个工作日快速反馈,助你高效规划学术计划!
- 📚检索:EI Compendex和Scopus双检索,确保论文的国际可见度!
- 👨🎓适合人群:从事生物医学工程、智能医疗系统、生物信号处理等相关研究的学者和学生。
- 代码示例(Python - 医学图像处理)
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
# 构建 U-Net 模型(简化版)
def unet_model(input_shape):
inputs = tf.keras.Input(shape=input_shape)
# 编码器
x = layers.Conv2D(32, 3, activation='relu', padding='same')(inputs)
x = layers.MaxPooling2D()(x)
# 解码器
x = layers.Conv2DTranspose(32, 3, strides=2, activation='relu', padding='same')(x)
outputs = layers.Conv2D(1, 1, activation='sigmoid')(x)
return tf.keras.Model(inputs, outputs)
# 初始化模型(输入为 256x256 灰度图像)
model = unet_model((256, 256, 1))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
🍎 第三届食品科学与生物医药学术会议(ICFSB 2025)
- The 3rd International Conference on Food Science and Bio-medicine
- 📅时间:2025年5月16-18日
- 📍地点:中国·广州
- 💡亮点:探讨食品科学与生物医药领域的最新进展,投稿后1周内快速反馈,高效便捷!
- 📚检索:Scopus、CNKI等多家检索,助力学术成果传播!
- 👨🎓适合人群:研究食品科学、生物医药、营养健康、食品安全等相关领域的学者和学生。
- 代码示例(Python - 药物释放曲线拟合)
import numpy as np
from scipy.optimize import curve_fit
# Higuchi 模型函数
def higuchi_model(t, kh):
return kh * np.sqrt(t)
# 实验数据(时间 [h] 和药物释放量 [mg])
t_data = np.array([1, 2, 4, 8, 12])
Q_data = np.array([5.1, 7.3, 10.5, 14.9, 18.2])
# 拟合参数
params, _ = curve_fit(higuchi_model, t_data, Q_data)
print(f"释放速率常数 k_H = {params[0]:.2f} mg/h^0.5")
💻 2025年健康信息化与数据分析国际学术会议(HIDA 2025)
- 2025 International Conference on Health Informatization and Data Analysis
- 📅时间:2025年6月13-15日
- 📍地点:中国·广州
- 💡亮点:聚焦健康信息化与数据分析的前沿技术,投稿后3个工作日快速反馈,高效省心!
- 📚检索:EI、Scopus、Google Scholar等多重检索,确保论文的广泛传播与影响力!
- 👨🎓适合人群:研究健康信息化、医疗数据分析、人工智能在健康领域应用等的学者和学生。
- 代码示例(Python - 健康数据时间序列预测)
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
import matplotlib.pyplot as plt
# 示例数据(月度门诊量)
dates = pd.date_range(start='2023-01', periods=24, freq='M')
patients = [120, 130, 125, 140, 135, 150, 145, 160, 155, 170, 165, 180,
175, 190, 185, 200, 195, 210, 205, 220, 215, 230, 225, 240]
ts = pd.Series(patients, index=dates)
# 训练 ARIMA(1,1,1) 模型
model = ARIMA(ts, order=(1,1,1))
result = model.fit()
# 预测未来 6 个月
forecast = result.get_forecast(steps=6)
forecast_mean = forecast.predicted_mean
# 可视化
plt.plot(ts, label='历史数据')
plt.plot(forecast_mean, label='预测值', linestyle='--')
plt.legend()
plt.title('门诊量预测')
plt.show()
扩展工具与库推荐
- 生物医学:
Bioconductor
(R 语言基因分析)、SimpleITK
(医学图像处理) - 食品科学:
COMSOL Multiphysics
(传质过程仿真)、PyEQL
(溶液化学计算) - 健康数据:
PyCaret
(自动化机器学习)、Tableau
(交互式数据可视化) - 药物研发:
RDKit
(化学信息学)、GROMACS
(分子动力学模拟)
以上内容覆盖健康大数据建模、医学影像分析、药物释放动力学和健康趋势预测,可直接用于学术研究或临床数据分析。
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://ais.cn/u/mmmiUz