【AI大模型学习路线】第一阶段之大模型开发基础——第二章(大模型的训练与应用)大模型发展史?大模型预训练、微调到应用的过程?

【AI大模型学习路线】第一阶段之大模型开发基础——第二章(大模型的训练与应用)大模型发展史?大模型预训练、微调到应用的过程?

【AI大模型学习路线】第一阶段之大模型开发基础——第二章(大模型的训练与应用)大模型发展史?大模型预训练、微调到应用的过程?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/146691809


🧠 一、大模型发展历史全景(简明年表)

在这里插入图片描述

🧩 二、大模型完整开发流程

包括三个关键阶段:

1️⃣ 大模型预训练(Pretraining)

目的:学习海量数据中的通用表示能力(语言、图像、知识等)

方式:

  • 自监督学习(Masked Language Modeling、Causal Language Modeling)
  • 使用数百GB到TB级别数据训练(如 CommonCrawl)

常用代码框架:transformers, accelerate, torch.distributed

# 示例:从头预训练语言模型(以GPT为例)
from transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

# 预训练数据准备(伪代码)
inputs = tokenizer("Hello, I am learning...", return_tensors="pt")
labels = inputs["input_ids"]

# 自监督损失训练
outputs = model(**inputs, labels=labels)
loss = outputs.loss
loss.backward()

  • 预训练阶段通常只由大型机构完成,如 OpenAI、Google、Meta、阿里、百度等。

2️⃣ 微调(Fine-tuning)

目的:让大模型适配特定任务,如问答、分类、摘要、翻译、遥感分割等。

技术点:

  • 全参数微调(fine-tuning):对所有模型参数进行训练
  • 参数高效微调(PEFT):如 LoRA、Prefix-Tuning,仅调整小部分参数

🌟 示例:使用LoRA对大模型微调(huggingface + peft)

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import get_peft_model, LoraConfig, TaskType

model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

# 配置LoRA微调参数
config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    r=8,
    lora_alpha=32,
    lora_dropout=0.1,
    bias="none"
)

# 添加LoRA adapter层
model = get_peft_model(model, config)
model.print_trainable_parameters()

  • 该方法可将原本需要几百G显存的训练变成单卡可完成的微调任务。

3️⃣ 应用部署(Inference & Serving)

目的:将训练好的大模型部署为可用服务(如API、Web界面、插件)

✅ 常用部署方式
在这里插入图片描述

示例:用 Gradio 部署大模型

import gradio as gr
from transformers import pipeline

generator = pipeline("text-generation", model="gpt2")

def respond(prompt):
    result = generator(prompt, max_new_tokens=50)
    return result[0]["generated_text"]

gr.Interface(fn=respond, inputs="text", outputs="text").launch()

🚀 三、大模型应用场景

在这里插入图片描述

✅ 总结:大模型开发三步法

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值