【AI大模型学习路线】第二阶段之RAG基础与架构——第六章(RAG基础与架构)为什么需要RAG(Retrieval‑Augmented Generation)?

【AI大模型学习路线】第二阶段之RAG基础与架构——第六章(RAG基础与架构)为什么需要RAG(Retrieval‑Augmented Generation)?

【AI大模型学习路线】第二阶段之RAG基础与架构——第六章(RAG基础与架构)为什么需要RAG(Retrieval‑Augmented Generation)?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/147360609


前言

本回答首先概述了 RAG(Retrieval‑Augmented Generation)的基本概念与架构要点,接着从 LLM 固有局限出发,分析为何在大模型应用中必须引入 RAG 以提升准确性、时效性与可验证性,最后结合 Python 代码示例说明典型的 RAG 流程与实现细节

1. RAG 基础概念

1.1 什么是 RAG

  • RAG(Retrieval‑Augmented Generation)是一种将检索系统与生成式大模型(LLM)结合的架构,通过先从外部知识库中检索相关文档,再将这些文档作为上下文输入给 LLM,从而提升生成结果的准确性与领域相关性
  • 与传统仅依赖静态参数的 LLM 不同,RAG 动态地获取最新或专业领域信息,避免“陈年”训练数据导致的知识过时问题​。

1.2 RAG 的核心流程

  • 查询编码(Query Encoding):将用户问题或指令编码为向量。
  • 向量检索(Vector Retrieval):在预先建立的文档向量库中,基于相似度检索出 top‑k 条相关文档。
  • 文档拼接(Context Augmentation):将检索到的文档文本拼接进 LLM 的输入 prompt。
  • 生成响应(Generation):LLM 在融合外部文档后生成答案,并可附带来源引用信息。

2. 为什么需要 RAG?

2.1 克服 LLM 知识过时与遗忘

  • 传统 LLM 的知识存储在网络参数中,一旦训练完成就固定不变,难以及时反映新信息。RAG 通过实时检索外部数据库,解决模型“记忆”过期问题​。

2.2 降低幻觉(Hallucination)率

  • LLM 在缺乏足够上下文时容易“瞎编”事实(hallucination)。RAG 提供了真实文档作为参考来源,显著减少了无中生有的错误回答。

2.3 提升领域专用问答能力

  • 企业或科研场景中常有大量专有文档和数据,通用 LLM 难以覆盖。RAG 能将这些私有知识库纳入生成环节,实现针对性强的专业 QA 和决策支持。

2.4 降低重训练成本

  • 当外部数据更新时,只需更新检索库即可,无需频繁对 LLM 进行大规模再训练,节约算力与时间成本。

3. RAG 架构要点

3.1 向量化检索模块

  • 文档预处理:使用预训练的文本嵌入模型(如 Sentence‑Transformers)将文档转为向量。
  • 索引与检索:借助向量数据库(如 Pinecone、Faiss)进行高效近似最近邻(ANN)检索。

3.2 生成模块

  • 采用开源或商业 LLM(如 GPT‑4、LLaMA、Cohere)
  • 将用户 query 与检索上下文拼接,控制 prompt 长度与格式,确保 LLM 能聚焦于检索到的关键信息​

3.3 端到端管道

flowchart LR
  A[用户提问] --> B[Query Encoding]
  B --> C[向量检索: Top‑k 文档]
  C --> D[Context Augmentation]
  D --> E[LLM 生成响应]
  E --> F[返回答案 + 引用]

4. Python 示例:基于 Hugging Face Transformers 的 RAG

下面示例展示如何用 Python 构建一个简易 RAG 系统:

from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration

# 1. 初始化 RAG tokenizer、检索器、生成模型
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")  # 文本与检索分词
retriever = RagRetriever.from_pretrained(
    "facebook/rag-token-base",
    index_name="exact",      # 使用精确匹配索引
    passages_path="docs.json" # 预先嵌入并存储的文档库
)
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-base")

# 2. 構造输入
question = "什么是 RAG,为什么需要?"
inputs = tokenizer(question, return_tensors="pt")

# 3. 检索并生成
#    retriever 返回相关文档向量与文本
#    model.generate 同时考虑 query 与文档 context
generated = model.generate(
    input_ids=inputs["input_ids"],
    attention_mask=inputs["attention_mask"],
    num_return_sequences=1,
    num_beams=2
)

# 4. 解码输出
answer = tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
print("回答:", answer)

代码解析

  • RagTokenizer:负责将 query 切分为生成与检索两套 token 表示。
  • RagRetriever:连接离线嵌入文档库,执行向量检索返回 top‑k 文档。
  • RagSequenceForGeneration:在生成阶段将原始 query 与检索上下文拼接,输入 LLM 解码器,最后输出高质量答案。

5. 未来展望

  • 多模态 RAG:扩展至图像、音频检索,提升跨领域生成能力。
  • 端对端优化:联合微调检索与生成环节,实现更紧密耦合与更低延迟。
  • 可解释性增强:自动标注文档来源与可信度评分,助力用户快速验证。

通过上述分析与示例,可以清晰地看到 RAG 在大模型应用中的关键价值它不仅弥补了 LLM 固有的知识时效与准确性短板,还以模块化方式实现了灵活扩展,为企业级与科研级场景提供了可控、高效、可审计的生成式 AI 解决方案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值