【AI大模型学习路线】第二阶段之RAG基础与架构——第六章(RAG基础与架构)为什么需要RAG(Retrieval‑Augmented Generation)?
【AI大模型学习路线】第二阶段之RAG基础与架构——第六章(RAG基础与架构)为什么需要RAG(Retrieval‑Augmented Generation)?
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/147360609
前言
本回答首先概述了 RAG(Retrieval‑Augmented Generation)的基本概念与架构要点,接着从 LLM 固有局限出发,分析为何在大模型应用中必须引入 RAG 以提升准确性、时效性与可验证性,最后结合 Python 代码示例说明典型的 RAG 流程与实现细节。
1. RAG 基础概念
1.1 什么是 RAG
- RAG(Retrieval‑Augmented Generation)是一种将检索系统与生成式大模型(LLM)结合的架构,通过先从外部知识库中检索相关文档,再将这些文档作为上下文输入给 LLM,从而提升生成结果的准确性与领域相关性。
- 与传统仅依赖静态参数的 LLM 不同,RAG 动态地获取最新或专业领域信息,避免“陈年”训练数据导致的知识过时问题。
1.2 RAG 的核心流程
- 查询编码(Query Encoding):将用户问题或指令编码为向量。
- 向量检索(Vector Retrieval):在预先建立的文档向量库中,基于相似度检索出 top‑k 条相关文档。
- 文档拼接(Context Augmentation):将检索到的文档文本拼接进 LLM 的输入 prompt。
- 生成响应(Generation):LLM 在融合外部文档后生成答案,并可附带来源引用信息。
2. 为什么需要 RAG?
2.1 克服 LLM 知识过时与遗忘
- 传统 LLM 的知识存储在网络参数中,一旦训练完成就固定不变,难以及时反映新信息。RAG 通过实时检索外部数据库,解决模型“记忆”过期问题。
2.2 降低幻觉(Hallucination)率
- LLM 在缺乏足够上下文时容易“瞎编”事实(hallucination)。RAG 提供了真实文档作为参考来源,显著减少了无中生有的错误回答。
2.3 提升领域专用问答能力
- 企业或科研场景中常有大量专有文档和数据,通用 LLM 难以覆盖。RAG 能将这些私有知识库纳入生成环节,实现针对性强的专业 QA 和决策支持。
2.4 降低重训练成本
- 当外部数据更新时,只需更新检索库即可,无需频繁对 LLM 进行大规模再训练,节约算力与时间成本。
3. RAG 架构要点
3.1 向量化检索模块
- 文档预处理:使用预训练的文本嵌入模型(如 Sentence‑Transformers)将文档转为向量。
- 索引与检索:借助向量数据库(如 Pinecone、Faiss)进行高效近似最近邻(ANN)检索。
3.2 生成模块
- 采用开源或商业 LLM(如 GPT‑4、LLaMA、Cohere)
- 将用户 query 与检索上下文拼接,控制 prompt 长度与格式,确保 LLM 能聚焦于检索到的关键信息
3.3 端到端管道
flowchart LR
A[用户提问] --> B[Query Encoding]
B --> C[向量检索: Top‑k 文档]
C --> D[Context Augmentation]
D --> E[LLM 生成响应]
E --> F[返回答案 + 引用]
4. Python 示例:基于 Hugging Face Transformers 的 RAG
下面示例展示如何用 Python 构建一个简易 RAG 系统:
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
# 1. 初始化 RAG tokenizer、检索器、生成模型
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base") # 文本与检索分词
retriever = RagRetriever.from_pretrained(
"facebook/rag-token-base",
index_name="exact", # 使用精确匹配索引
passages_path="docs.json" # 预先嵌入并存储的文档库
)
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-base")
# 2. 構造输入
question = "什么是 RAG,为什么需要?"
inputs = tokenizer(question, return_tensors="pt")
# 3. 检索并生成
# retriever 返回相关文档向量与文本
# model.generate 同时考虑 query 与文档 context
generated = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
num_return_sequences=1,
num_beams=2
)
# 4. 解码输出
answer = tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
print("回答:", answer)
代码解析
RagTokenizer
:负责将 query 切分为生成与检索两套 token 表示。RagRetriever
:连接离线嵌入文档库,执行向量检索返回 top‑k 文档。RagSequenceForGeneration
:在生成阶段将原始 query 与检索上下文拼接,输入 LLM 解码器,最后输出高质量答案。
5. 未来展望
- 多模态 RAG:扩展至图像、音频检索,提升跨领域生成能力。
- 端对端优化:联合微调检索与生成环节,实现更紧密耦合与更低延迟。
- 可解释性增强:自动标注文档来源与可信度评分,助力用户快速验证。
通过上述分析与示例,可以清晰地看到 RAG 在大模型应用中的关键价值:它不仅弥补了 LLM 固有的知识时效与准确性短板,还以模块化方式实现了灵活扩展,为企业级与科研级场景提供了可控、高效、可审计的生成式 AI 解决方案。